Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386603442> ?p ?o ?g. }
- W4386603442 abstract "Background: Flat foot deformity is a prevalent and challenging condition often leading to various clinical complications. Accurate identification of abnormal foot types is essential for appropriate interventions. Method: A dataset consisting of 1573 plantar pressure images from 125 individuals was collected. The performance of the You Only Look Once v5 (YOLO-v5) model, improved YOLO-v5 model, and multi-label classification model was evaluated for foot type identification using the collected images. A new dataset was also collected to verify and compare the models. Results: The multi-label classification algorithm based on ResNet-50 outperformed other algorithms. The improved YOLO-v5 model with Squeeze-and-Excitation (SE), the improved YOLO-v5 model with Convolutional Block Attention Module (CBAM), and the multilabel classification model based on ResNet-50 achieved an accuracy of 0.652, 0.717, and 0.826, respectively, which is significantly higher than those obtained using the ordinary plantar-pressure system and the standard YOLO-v5 model. Conclusion: These results indicate that the proposed DL-based multilabel classification model based on ResNet-50 is superior in flat foot type detection and can be used to evaluate the clinical rehabilitation status of patients with abnormal foot types and various foot pathologies when more data on patients with various diseases are available for training." @default.
- W4386603442 created "2023-09-12" @default.
- W4386603442 creator A5007807415 @default.
- W4386603442 creator A5021053525 @default.
- W4386603442 creator A5027519759 @default.
- W4386603442 creator A5028333907 @default.
- W4386603442 creator A5046427560 @default.
- W4386603442 creator A5054162187 @default.
- W4386603442 creator A5061850565 @default.
- W4386603442 creator A5078175248 @default.
- W4386603442 creator A5079711027 @default.
- W4386603442 creator A5083014172 @default.
- W4386603442 date "2023-09-11" @default.
- W4386603442 modified "2023-09-30" @default.
- W4386603442 title "A deep learning method for foot-type classification using plantar pressure images" @default.
- W4386603442 cites W1605857162 @default.
- W4386603442 cites W1977395150 @default.
- W4386603442 cites W2011533380 @default.
- W4386603442 cites W2032819113 @default.
- W4386603442 cites W2082055698 @default.
- W4386603442 cites W2090485014 @default.
- W4386603442 cites W2171189956 @default.
- W4386603442 cites W2331119317 @default.
- W4386603442 cites W2562285071 @default.
- W4386603442 cites W2627065090 @default.
- W4386603442 cites W2790495571 @default.
- W4386603442 cites W2896487192 @default.
- W4386603442 cites W2919115771 @default.
- W4386603442 cites W2963420686 @default.
- W4386603442 cites W2972580028 @default.
- W4386603442 cites W2997190973 @default.
- W4386603442 cites W3033017829 @default.
- W4386603442 cites W3094961137 @default.
- W4386603442 cites W3120047874 @default.
- W4386603442 cites W3160712306 @default.
- W4386603442 cites W3162123734 @default.
- W4386603442 cites W3185504516 @default.
- W4386603442 cites W3198071952 @default.
- W4386603442 cites W3199624602 @default.
- W4386603442 cites W3206075414 @default.
- W4386603442 cites W4210506469 @default.
- W4386603442 cites W4221034919 @default.
- W4386603442 cites W4310458058 @default.
- W4386603442 cites W4378906526 @default.
- W4386603442 doi "https://doi.org/10.3389/fbioe.2023.1239246" @default.
- W4386603442 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37767108" @default.
- W4386603442 hasPublicationYear "2023" @default.
- W4386603442 type Work @default.
- W4386603442 citedByCount "0" @default.
- W4386603442 crossrefType "journal-article" @default.
- W4386603442 hasAuthorship W4386603442A5007807415 @default.
- W4386603442 hasAuthorship W4386603442A5021053525 @default.
- W4386603442 hasAuthorship W4386603442A5027519759 @default.
- W4386603442 hasAuthorship W4386603442A5028333907 @default.
- W4386603442 hasAuthorship W4386603442A5046427560 @default.
- W4386603442 hasAuthorship W4386603442A5054162187 @default.
- W4386603442 hasAuthorship W4386603442A5061850565 @default.
- W4386603442 hasAuthorship W4386603442A5078175248 @default.
- W4386603442 hasAuthorship W4386603442A5079711027 @default.
- W4386603442 hasAuthorship W4386603442A5083014172 @default.
- W4386603442 hasBestOaLocation W43866034421 @default.
- W4386603442 hasConcept C115076146 @default.
- W4386603442 hasConcept C116834253 @default.
- W4386603442 hasConcept C127413603 @default.
- W4386603442 hasConcept C138885662 @default.
- W4386603442 hasConcept C141071460 @default.
- W4386603442 hasConcept C153180895 @default.
- W4386603442 hasConcept C154945302 @default.
- W4386603442 hasConcept C2524010 @default.
- W4386603442 hasConcept C2777210771 @default.
- W4386603442 hasConcept C2779266915 @default.
- W4386603442 hasConcept C2779982284 @default.
- W4386603442 hasConcept C2986382866 @default.
- W4386603442 hasConcept C2992252211 @default.
- W4386603442 hasConcept C33923547 @default.
- W4386603442 hasConcept C41008148 @default.
- W4386603442 hasConcept C41325743 @default.
- W4386603442 hasConcept C41895202 @default.
- W4386603442 hasConcept C59822182 @default.
- W4386603442 hasConcept C71924100 @default.
- W4386603442 hasConcept C78519656 @default.
- W4386603442 hasConcept C86803240 @default.
- W4386603442 hasConceptScore W4386603442C115076146 @default.
- W4386603442 hasConceptScore W4386603442C116834253 @default.
- W4386603442 hasConceptScore W4386603442C127413603 @default.
- W4386603442 hasConceptScore W4386603442C138885662 @default.
- W4386603442 hasConceptScore W4386603442C141071460 @default.
- W4386603442 hasConceptScore W4386603442C153180895 @default.
- W4386603442 hasConceptScore W4386603442C154945302 @default.
- W4386603442 hasConceptScore W4386603442C2524010 @default.
- W4386603442 hasConceptScore W4386603442C2777210771 @default.
- W4386603442 hasConceptScore W4386603442C2779266915 @default.
- W4386603442 hasConceptScore W4386603442C2779982284 @default.
- W4386603442 hasConceptScore W4386603442C2986382866 @default.
- W4386603442 hasConceptScore W4386603442C2992252211 @default.
- W4386603442 hasConceptScore W4386603442C33923547 @default.
- W4386603442 hasConceptScore W4386603442C41008148 @default.
- W4386603442 hasConceptScore W4386603442C41325743 @default.
- W4386603442 hasConceptScore W4386603442C41895202 @default.
- W4386603442 hasConceptScore W4386603442C59822182 @default.