Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386603977> ?p ?o ?g. }
- W4386603977 abstract "Abstract The color and texture characteristics of crops can reflect their nitrogen (N) nutrient status and help optimize N fertilizer management. This study conducted a one-year field experiment to collect sugarcane leaf images at tillering and elongation stages using a commercial digital camera and extract leaf image color feature (CF) and texture feature (TF) parameters using digital image processing techniques. By analyzing the correlation between leaf N content and feature parameters, feature dimensionality reduction was performed using principal component analysis (PCA), and three regression methods (multiple linear regression; MLR, random forest regression; RF, stacking fusion model; SFM) were used to construct N content estimation models based on different image feature parameters. All models were built using five-fold cross-validation and grid search to verify the model performance and stability. The results showed that the models based on color-texture integrated principal component features (C-T-PCA) outperformed the single-feature models based on CF or TF. Among them, SFM had the highest accuracy for the validation dataset with the model coefficient of determination (R 2 ) of 0.9264 for the tillering stage and 0.9111 for the elongation stage, with the maximum improvement of 9.85% and 8.91%, respectively, compared with the other tested models. In conclusion, the SFM framework based on C-T-PCA combines the advantages of multiple models to enhance the model performance while enhancing the anti-interference and generalization capabilities. Combining digital image processing techniques and machine learning facilitates fast and nondestructive estimation of crop N-substance nutrition." @default.
- W4386603977 created "2023-09-12" @default.
- W4386603977 creator A5004659018 @default.
- W4386603977 creator A5013630316 @default.
- W4386603977 creator A5015356503 @default.
- W4386603977 creator A5035775491 @default.
- W4386603977 creator A5074558201 @default.
- W4386603977 date "2023-09-11" @default.
- W4386603977 modified "2023-09-26" @default.
- W4386603977 title "Sugarcane nitrogen nutrition estimation with digital images and machine learning methods" @default.
- W4386603977 cites W1901616594 @default.
- W4386603977 cites W1982627164 @default.
- W4386603977 cites W1985870845 @default.
- W4386603977 cites W1989712641 @default.
- W4386603977 cites W2003835955 @default.
- W4386603977 cites W2012093028 @default.
- W4386603977 cites W2033275656 @default.
- W4386603977 cites W2035773017 @default.
- W4386603977 cites W2036798077 @default.
- W4386603977 cites W2043200533 @default.
- W4386603977 cites W2054814429 @default.
- W4386603977 cites W2070438179 @default.
- W4386603977 cites W2105809628 @default.
- W4386603977 cites W2118703810 @default.
- W4386603977 cites W2132424470 @default.
- W4386603977 cites W2138696814 @default.
- W4386603977 cites W2150721269 @default.
- W4386603977 cites W2158143121 @default.
- W4386603977 cites W2185489349 @default.
- W4386603977 cites W2190546151 @default.
- W4386603977 cites W2376665052 @default.
- W4386603977 cites W2416492311 @default.
- W4386603977 cites W2518599539 @default.
- W4386603977 cites W2596058005 @default.
- W4386603977 cites W2737986825 @default.
- W4386603977 cites W2789255992 @default.
- W4386603977 cites W2799437918 @default.
- W4386603977 cites W2808198652 @default.
- W4386603977 cites W2887049581 @default.
- W4386603977 cites W2903662845 @default.
- W4386603977 cites W2913858069 @default.
- W4386603977 cites W2918084323 @default.
- W4386603977 cites W2943024341 @default.
- W4386603977 cites W2947361958 @default.
- W4386603977 cites W2985180429 @default.
- W4386603977 cites W2996041315 @default.
- W4386603977 cites W3001657276 @default.
- W4386603977 cites W3025800305 @default.
- W4386603977 cites W3092059796 @default.
- W4386603977 cites W3096629639 @default.
- W4386603977 cites W3140501008 @default.
- W4386603977 cites W3159962161 @default.
- W4386603977 cites W3191347191 @default.
- W4386603977 cites W4207050292 @default.
- W4386603977 cites W4285306261 @default.
- W4386603977 cites W4297549400 @default.
- W4386603977 cites W4307363761 @default.
- W4386603977 cites W4308422286 @default.
- W4386603977 cites W4311461947 @default.
- W4386603977 cites W4312139899 @default.
- W4386603977 cites W4313327070 @default.
- W4386603977 cites W4320523694 @default.
- W4386603977 cites W4362683506 @default.
- W4386603977 cites W4368364703 @default.
- W4386603977 cites W4376651842 @default.
- W4386603977 cites W4378472514 @default.
- W4386603977 doi "https://doi.org/10.1038/s41598-023-42190-2" @default.
- W4386603977 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37697060" @default.
- W4386603977 hasPublicationYear "2023" @default.
- W4386603977 type Work @default.
- W4386603977 citedByCount "0" @default.
- W4386603977 crossrefType "journal-article" @default.
- W4386603977 hasAuthorship W4386603977A5004659018 @default.
- W4386603977 hasAuthorship W4386603977A5013630316 @default.
- W4386603977 hasAuthorship W4386603977A5015356503 @default.
- W4386603977 hasAuthorship W4386603977A5035775491 @default.
- W4386603977 hasAuthorship W4386603977A5074558201 @default.
- W4386603977 hasBestOaLocation W43866039771 @default.
- W4386603977 hasConcept C138885662 @default.
- W4386603977 hasConcept C153180895 @default.
- W4386603977 hasConcept C154945302 @default.
- W4386603977 hasConcept C169258074 @default.
- W4386603977 hasConcept C27438332 @default.
- W4386603977 hasConcept C2776401178 @default.
- W4386603977 hasConcept C33923547 @default.
- W4386603977 hasConcept C41008148 @default.
- W4386603977 hasConcept C41895202 @default.
- W4386603977 hasConcept C70518039 @default.
- W4386603977 hasConceptScore W4386603977C138885662 @default.
- W4386603977 hasConceptScore W4386603977C153180895 @default.
- W4386603977 hasConceptScore W4386603977C154945302 @default.
- W4386603977 hasConceptScore W4386603977C169258074 @default.
- W4386603977 hasConceptScore W4386603977C27438332 @default.
- W4386603977 hasConceptScore W4386603977C2776401178 @default.
- W4386603977 hasConceptScore W4386603977C33923547 @default.
- W4386603977 hasConceptScore W4386603977C41008148 @default.
- W4386603977 hasConceptScore W4386603977C41895202 @default.
- W4386603977 hasConceptScore W4386603977C70518039 @default.
- W4386603977 hasIssue "1" @default.
- W4386603977 hasLocation W43866039771 @default.