Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386616384> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4386616384 abstract "Abstract In this work, a new multifidelity (MF) uncertainty quantification (UQ) framework is presented and applied to the LS89 nozzle modified by fouling. Geometrical uncertainties significantly influence the aerodynamic performance of gas turbines. One representative example is given by the airfoil shape modified by fouling deposition, as in turbine nozzle vanes, which generates high-dimensional input uncertainties. However, the traditional UQ approaches suffer from the curse of dimensionality phenomenon in predicting the influence of high-dimensional uncertainties. Thus, a new approach based on multifidelity deep neural networks (MF-DNN) was proposed in this paper to solve the high-dimensional UQ problem. The basic idea of MF-DNN is to ensure the approximation capability of neural networks based on abundant low-fidelity (LF) data and few high-fidelity (HF) data. The prediction accuracy of MF-DNN was first evaluated using a 15-dimensional benchmark function. An affordable turbomachinery UQ platform was then built based on key components including the MF-DNN model, the sampling module, the parameterization module and the statistical processing module. The impact of fouling deposition on LS89 nozzle vane flow was investigated using the proposed UQ framework. In detail, the MF-DNN was fine-tuned based on bi-level numerical simulation results: the 2D Euler flow field as low-fidelity data and the 3D Reynolds-averaged Navier–Stokes (RANS) flow field as high-fidelity data. The UQ results show that the total pressure loss of LS89 vane is increased by at most 17.1% or reduced by at most 4.3%, while the mean value of the loss is increased by 3.4% compared to the baseline. The main reason for relative changes in turbine nozzle performance is that the geometric uncertainties induced by fouling deposition significantly alter the intensity of shock waves near the throat area and trailing edge. The developed UQ platform could provide a useful tool in the design and optimization of advanced turbomachinery considering high-dimensional input uncertainties." @default.
- W4386616384 created "2023-09-12" @default.
- W4386616384 creator A5021734424 @default.
- W4386616384 creator A5041477124 @default.
- W4386616384 creator A5052655520 @default.
- W4386616384 creator A5090819151 @default.
- W4386616384 date "2023-10-04" @default.
- W4386616384 modified "2023-10-06" @default.
- W4386616384 title "HIGH-DIMENSIONAL UNCERTAINTY QUANTIFICATION OF HIGH-PRESSURE TURBINE VANE BASED ON MULTI-FIDELITY DEEP NEURAL NETWORKS" @default.
- W4386616384 cites W1866481951 @default.
- W4386616384 cites W1982886636 @default.
- W4386616384 cites W2057315106 @default.
- W4386616384 cites W2067221177 @default.
- W4386616384 cites W2105873818 @default.
- W4386616384 cites W2161105436 @default.
- W4386616384 cites W2305253642 @default.
- W4386616384 cites W2525259760 @default.
- W4386616384 cites W2729558485 @default.
- W4386616384 cites W2790762380 @default.
- W4386616384 cites W2811302444 @default.
- W4386616384 cites W2889021437 @default.
- W4386616384 cites W2919958648 @default.
- W4386616384 cites W2979165111 @default.
- W4386616384 cites W3039833589 @default.
- W4386616384 cites W3098407580 @default.
- W4386616384 cites W3106380050 @default.
- W4386616384 cites W3115207133 @default.
- W4386616384 cites W3119098397 @default.
- W4386616384 cites W3119280259 @default.
- W4386616384 cites W3137399437 @default.
- W4386616384 cites W4235898059 @default.
- W4386616384 cites W4242737740 @default.
- W4386616384 cites W4250664506 @default.
- W4386616384 cites W4255365489 @default.
- W4386616384 cites W4294360247 @default.
- W4386616384 doi "https://doi.org/10.1115/1.4063391" @default.
- W4386616384 hasPublicationYear "2023" @default.
- W4386616384 type Work @default.
- W4386616384 citedByCount "0" @default.
- W4386616384 crossrefType "journal-article" @default.
- W4386616384 hasAuthorship W4386616384A5021734424 @default.
- W4386616384 hasAuthorship W4386616384A5041477124 @default.
- W4386616384 hasAuthorship W4386616384A5052655520 @default.
- W4386616384 hasAuthorship W4386616384A5090819151 @default.
- W4386616384 hasConcept C105923489 @default.
- W4386616384 hasConcept C112124176 @default.
- W4386616384 hasConcept C11413529 @default.
- W4386616384 hasConcept C119857082 @default.
- W4386616384 hasConcept C127413603 @default.
- W4386616384 hasConcept C146978453 @default.
- W4386616384 hasConcept C154945302 @default.
- W4386616384 hasConcept C1633027 @default.
- W4386616384 hasConcept C178790620 @default.
- W4386616384 hasConcept C185592680 @default.
- W4386616384 hasConcept C2778449969 @default.
- W4386616384 hasConcept C32230216 @default.
- W4386616384 hasConcept C32526432 @default.
- W4386616384 hasConcept C41008148 @default.
- W4386616384 hasConcept C50644808 @default.
- W4386616384 hasConcept C56200935 @default.
- W4386616384 hasConcept C78519656 @default.
- W4386616384 hasConcept C83104080 @default.
- W4386616384 hasConceptScore W4386616384C105923489 @default.
- W4386616384 hasConceptScore W4386616384C112124176 @default.
- W4386616384 hasConceptScore W4386616384C11413529 @default.
- W4386616384 hasConceptScore W4386616384C119857082 @default.
- W4386616384 hasConceptScore W4386616384C127413603 @default.
- W4386616384 hasConceptScore W4386616384C146978453 @default.
- W4386616384 hasConceptScore W4386616384C154945302 @default.
- W4386616384 hasConceptScore W4386616384C1633027 @default.
- W4386616384 hasConceptScore W4386616384C178790620 @default.
- W4386616384 hasConceptScore W4386616384C185592680 @default.
- W4386616384 hasConceptScore W4386616384C2778449969 @default.
- W4386616384 hasConceptScore W4386616384C32230216 @default.
- W4386616384 hasConceptScore W4386616384C32526432 @default.
- W4386616384 hasConceptScore W4386616384C41008148 @default.
- W4386616384 hasConceptScore W4386616384C50644808 @default.
- W4386616384 hasConceptScore W4386616384C56200935 @default.
- W4386616384 hasConceptScore W4386616384C78519656 @default.
- W4386616384 hasConceptScore W4386616384C83104080 @default.
- W4386616384 hasFunder F4320320300 @default.
- W4386616384 hasIssue "11" @default.
- W4386616384 hasLocation W43866163841 @default.
- W4386616384 hasOpenAccess W4386616384 @default.
- W4386616384 hasPrimaryLocation W43866163841 @default.
- W4386616384 hasRelatedWork W1564882210 @default.
- W4386616384 hasRelatedWork W1912407818 @default.
- W4386616384 hasRelatedWork W2116307597 @default.
- W4386616384 hasRelatedWork W2911627970 @default.
- W4386616384 hasRelatedWork W2912423880 @default.
- W4386616384 hasRelatedWork W3210836806 @default.
- W4386616384 hasRelatedWork W4210712489 @default.
- W4386616384 hasRelatedWork W4384930412 @default.
- W4386616384 hasRelatedWork W838937606 @default.
- W4386616384 hasRelatedWork W2607353083 @default.
- W4386616384 hasVolume "145" @default.
- W4386616384 isParatext "false" @default.
- W4386616384 isRetracted "false" @default.
- W4386616384 workType "article" @default.