Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386624215> ?p ?o ?g. }
- W4386624215 endingPage "2605" @default.
- W4386624215 startingPage "2595" @default.
- W4386624215 abstract "ConspectusAs the demand for a carbon-neutral society grows rapidly, research on CO2 electrolysis has become very active. Many catalysts are reported for converting CO2 into value-added products by electrochemical reactions, which have to perform at high Faradaic and energy efficiency to become commercially viable. Various types of CO2 electrolyzers have been used in this effort, such as the H-cell, flow cell, and zero-gap membrane-electrode assembly (MEA) cell. H-cell studies are conducted with electrodes immersed in CO2-saturated electrolyte and have been used to elucidate reaction pathways and kinetic parameters of electrochemical CO2 reduction on many types of catalytic surfaces. From a transport phenomenological perspective, the low solubility and diffusion of CO2 to the electrode surface severely limit the maximum attainable current density, and this metric has been shown to have significant influence on the product spectrum. Flow and MEA cells provide a solution in the form of gas-diffusion electrodes (GDEs) that enable gaseous CO2 to closely reach the catalyst layer and yield record-high current densities. Because GDEs involve a complicated interface consisting of the catalyst surface, gaseous CO2, polymer overlayers, and liquid electrolyte, catalysts with high intrinsic activity might not show high performance in these GDE-based electrolyzers. Catalysts showing low overpotentials at low current densities may suffer from poor electron conductivity and mass transfer limitations at high current densities. Furthermore, the stability of the GDE-based catalysts is often compromised as CO2 electrolysis is pursued with high activity, most notoriously by electrolyte flooding.In this Account, we introduce recent examples where the electrocatalysts were integrated in GDEs, achieving high production rates. The performance of such systems is contingent on both GDE and cell design, and various parameters that affect the cell performance are discussed. Gaseous products, such as carbon monoxide, methane, and ethylene, and liquid products, such as formate and ethanol, have been mainly reported with high partial current density using the flow or MEA cells. Different strategies to this end are described, such as controlling microenvironments by the use of polymers mixed within the catalyst layer or the functionalization of catalyst surfaces with ligands to increase local concentrations of intermediates. Unique CO2 electrolyzer designs are also treated, including the incorporation of light-responsive plasmonic catalysts in the GDE, and combining the electrolyzer with a fermenter utilizing a microbial biocatalyst to synthesize complex multicarbon products. Basic conditions which the catalyst should satisfy to be adapted in the GDEs are listed, and our perspective is provided." @default.
- W4386624215 created "2023-09-13" @default.
- W4386624215 creator A5009084505 @default.
- W4386624215 creator A5010369280 @default.
- W4386624215 creator A5031415025 @default.
- W4386624215 creator A5046537693 @default.
- W4386624215 creator A5073527981 @default.
- W4386624215 date "2023-09-12" @default.
- W4386624215 modified "2023-10-14" @default.
- W4386624215 title "Developing Catalysts Integrated in Gas-Diffusion Electrodes for CO<sub>2</sub> Electrolyzers" @default.
- W4386624215 cites W1108713415 @default.
- W4386624215 cites W2296143349 @default.
- W4386624215 cites W2319865050 @default.
- W4386624215 cites W2409722460 @default.
- W4386624215 cites W2561747887 @default.
- W4386624215 cites W2584996270 @default.
- W4386624215 cites W2594210403 @default.
- W4386624215 cites W2600150897 @default.
- W4386624215 cites W2784681531 @default.
- W4386624215 cites W2804235153 @default.
- W4386624215 cites W2810132942 @default.
- W4386624215 cites W2909300313 @default.
- W4386624215 cites W2933456767 @default.
- W4386624215 cites W2937382495 @default.
- W4386624215 cites W2952989667 @default.
- W4386624215 cites W2965193464 @default.
- W4386624215 cites W2972247864 @default.
- W4386624215 cites W2972593701 @default.
- W4386624215 cites W2972726261 @default.
- W4386624215 cites W2995478333 @default.
- W4386624215 cites W2996484722 @default.
- W4386624215 cites W3005205992 @default.
- W4386624215 cites W3015369582 @default.
- W4386624215 cites W3018260377 @default.
- W4386624215 cites W3025836311 @default.
- W4386624215 cites W3031991863 @default.
- W4386624215 cites W3046138211 @default.
- W4386624215 cites W3048431271 @default.
- W4386624215 cites W3087730500 @default.
- W4386624215 cites W3089724662 @default.
- W4386624215 cites W3092771172 @default.
- W4386624215 cites W3104527901 @default.
- W4386624215 cites W3106880887 @default.
- W4386624215 cites W3119087802 @default.
- W4386624215 cites W3128945229 @default.
- W4386624215 cites W3137987617 @default.
- W4386624215 cites W3154581540 @default.
- W4386624215 cites W3165555416 @default.
- W4386624215 cites W3176898886 @default.
- W4386624215 cites W3183001673 @default.
- W4386624215 cites W3185649036 @default.
- W4386624215 cites W3196457189 @default.
- W4386624215 cites W3199410873 @default.
- W4386624215 cites W3205799102 @default.
- W4386624215 cites W3207113950 @default.
- W4386624215 cites W4205540179 @default.
- W4386624215 cites W4205568657 @default.
- W4386624215 cites W4212893898 @default.
- W4386624215 cites W4214807592 @default.
- W4386624215 cites W4220786913 @default.
- W4386624215 cites W4224246878 @default.
- W4386624215 cites W4224322767 @default.
- W4386624215 cites W4225377266 @default.
- W4386624215 cites W4225425490 @default.
- W4386624215 cites W4283453174 @default.
- W4386624215 cites W4287219036 @default.
- W4386624215 cites W4288061446 @default.
- W4386624215 cites W4288067367 @default.
- W4386624215 cites W4289109531 @default.
- W4386624215 cites W4289783337 @default.
- W4386624215 cites W4295152431 @default.
- W4386624215 cites W4306391014 @default.
- W4386624215 cites W4307515194 @default.
- W4386624215 cites W4308456507 @default.
- W4386624215 cites W4308888513 @default.
- W4386624215 cites W4309048037 @default.
- W4386624215 cites W4311007349 @default.
- W4386624215 cites W4311883695 @default.
- W4386624215 cites W4321164906 @default.
- W4386624215 cites W4321602970 @default.
- W4386624215 cites W4360992842 @default.
- W4386624215 cites W4379051590 @default.
- W4386624215 doi "https://doi.org/10.1021/acs.accounts.3c00349" @default.
- W4386624215 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37698057" @default.
- W4386624215 hasPublicationYear "2023" @default.
- W4386624215 type Work @default.
- W4386624215 citedByCount "0" @default.
- W4386624215 crossrefType "journal-article" @default.
- W4386624215 hasAuthorship W4386624215A5009084505 @default.
- W4386624215 hasAuthorship W4386624215A5010369280 @default.
- W4386624215 hasAuthorship W4386624215A5031415025 @default.
- W4386624215 hasAuthorship W4386624215A5046537693 @default.
- W4386624215 hasAuthorship W4386624215A5073527981 @default.
- W4386624215 hasConcept C100729193 @default.
- W4386624215 hasConcept C121332964 @default.
- W4386624215 hasConcept C127413603 @default.
- W4386624215 hasConcept C130349721 @default.
- W4386624215 hasConcept C136674465 @default.