Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386629076> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4386629076 endingPage "58" @default.
- W4386629076 startingPage "43" @default.
- W4386629076 abstract "Travel insurance serves as a crucial financial safeguard, offering coverage against unforeseen expenses and losses incurred during travel. With the advent of the proliferation of insurance types and the amplified demand for Covid-related coverage, insurance companies face the imperative task of accurately predicting customers’ likelihood to purchase insurance. This can assist the insurance providers in focusing on the most lucrative clients and boosting sales. By employing advanced machine learning techniques, this study aims to forecast the consumer segments most inclined to acquire travel insurance, allowing targeted strategies to be developed. A comprehensive analysis was carried out on a Kaggle dataset comprising prior clients of a travel insurance firm utilizing the K-Nearest Neighbors (KNN), Decision Tree Classifier (DT), Support Vector Machines (SVM), Naïve Bayes (NB), Logistic Regression (LR), and Random Forest (RF) models. Extensive data cleaning was done before model building. Performance evaluation was then based on accuracy, F1 score, and the Area Under Curve (AUC) with Receiver Operating Characteristics (ROC) curve. Inexplicably, KNN outperformed other models, achieving an accuracy of 0.81, precision of 0.82, recall of 0.82, F1 score of 0.80, and an AUC of 0.78. The findings of this study are a valuable guide for deploying machine learning algorithms in predicting travel insurance purchases, thus empowering insurance companies to target the most lucrative clientele and bolster revenue generation." @default.
- W4386629076 created "2023-09-13" @default.
- W4386629076 creator A5009755561 @default.
- W4386629076 creator A5023212073 @default.
- W4386629076 creator A5038453557 @default.
- W4386629076 creator A5083356789 @default.
- W4386629076 date "2023-09-13" @default.
- W4386629076 modified "2023-10-06" @default.
- W4386629076 title "Predicting Travel Insurance Purchases in an Insurance Firm through Machine Learning Methods after COVID-19" @default.
- W4386629076 doi "https://doi.org/10.33093/jiwe.2023.2.2.4" @default.
- W4386629076 hasPublicationYear "2023" @default.
- W4386629076 type Work @default.
- W4386629076 citedByCount "0" @default.
- W4386629076 crossrefType "journal-article" @default.
- W4386629076 hasAuthorship W4386629076A5009755561 @default.
- W4386629076 hasAuthorship W4386629076A5023212073 @default.
- W4386629076 hasAuthorship W4386629076A5038453557 @default.
- W4386629076 hasAuthorship W4386629076A5083356789 @default.
- W4386629076 hasBestOaLocation W43866290761 @default.
- W4386629076 hasConcept C10138342 @default.
- W4386629076 hasConcept C119857082 @default.
- W4386629076 hasConcept C12267149 @default.
- W4386629076 hasConcept C140331021 @default.
- W4386629076 hasConcept C144133560 @default.
- W4386629076 hasConcept C148524875 @default.
- W4386629076 hasConcept C154945302 @default.
- W4386629076 hasConcept C162118730 @default.
- W4386629076 hasConcept C169258074 @default.
- W4386629076 hasConcept C195487862 @default.
- W4386629076 hasConcept C41008148 @default.
- W4386629076 hasConcept C52001869 @default.
- W4386629076 hasConcept C84525736 @default.
- W4386629076 hasConceptScore W4386629076C10138342 @default.
- W4386629076 hasConceptScore W4386629076C119857082 @default.
- W4386629076 hasConceptScore W4386629076C12267149 @default.
- W4386629076 hasConceptScore W4386629076C140331021 @default.
- W4386629076 hasConceptScore W4386629076C144133560 @default.
- W4386629076 hasConceptScore W4386629076C148524875 @default.
- W4386629076 hasConceptScore W4386629076C154945302 @default.
- W4386629076 hasConceptScore W4386629076C162118730 @default.
- W4386629076 hasConceptScore W4386629076C169258074 @default.
- W4386629076 hasConceptScore W4386629076C195487862 @default.
- W4386629076 hasConceptScore W4386629076C41008148 @default.
- W4386629076 hasConceptScore W4386629076C52001869 @default.
- W4386629076 hasConceptScore W4386629076C84525736 @default.
- W4386629076 hasIssue "2" @default.
- W4386629076 hasLocation W43866290761 @default.
- W4386629076 hasOpenAccess W4386629076 @default.
- W4386629076 hasPrimaryLocation W43866290761 @default.
- W4386629076 hasRelatedWork W2940523548 @default.
- W4386629076 hasRelatedWork W2985924212 @default.
- W4386629076 hasRelatedWork W4285407528 @default.
- W4386629076 hasRelatedWork W4313070894 @default.
- W4386629076 hasRelatedWork W4321636153 @default.
- W4386629076 hasRelatedWork W4377964522 @default.
- W4386629076 hasRelatedWork W4383535405 @default.
- W4386629076 hasRelatedWork W4383746529 @default.
- W4386629076 hasRelatedWork W4384345534 @default.
- W4386629076 hasRelatedWork W4386123260 @default.
- W4386629076 hasVolume "2" @default.
- W4386629076 isParatext "false" @default.
- W4386629076 isRetracted "false" @default.
- W4386629076 workType "article" @default.