Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386629098> ?p ?o ?g. }
- W4386629098 endingPage "2366" @default.
- W4386629098 startingPage "2366" @default.
- W4386629098 abstract "Reference evapotranspiration (ET0) is one important agrometeorological parameter for hydrological studies and climate risk zoning. ET0 calculation by the FAO Penman–Monteith method requires several input data. However, the availability of climate data has been a problem in many places around the world, so the study of scenarios with different combinations of climate data has become essential. The aim of this study was to evaluate the performance of artificial neural network (ANN), random forest (RF), support vector machine (SVM), and multiple linear regression (MLR) approaches to estimate monthly mean ET0 with different input data combinations and scenarios. Three scenarios were evaluated: at the state level, where all climatological stations were used (Scenario I–SI), and at the regional level, where the Minas Gerais state was divided according to the climatic classifications of Thornthwaite (Scenario II–SII) and Köppen (Scenario III–SIII). ANN and RF performed better in ET0 estimation among the models evaluated in the SI, SII, and SIII scenarios with the following data combinations: (i) latitude, longitude, altitude, month, mean, maximum and minimum temperature, and relative humidity and (ii) latitude, longitude, altitude, month, mean temperature, and relative humidity. SVM and MLR models are recommended for all scenarios in situations with limited climatic data where only air temperature and relative humidity data are available. The results and information presented in this study are important for the agricultural chain and water resources in Minas Gerais state." @default.
- W4386629098 created "2023-09-13" @default.
- W4386629098 creator A5002406291 @default.
- W4386629098 creator A5018012006 @default.
- W4386629098 creator A5044767795 @default.
- W4386629098 creator A5049307051 @default.
- W4386629098 creator A5066130123 @default.
- W4386629098 creator A5069980323 @default.
- W4386629098 creator A5070574323 @default.
- W4386629098 creator A5086805465 @default.
- W4386629098 creator A5091804441 @default.
- W4386629098 date "2023-09-12" @default.
- W4386629098 modified "2023-09-29" @default.
- W4386629098 title "Machine Learning and Conventional Methods for Reference Evapotranspiration Estimation Using Limited-Climatic-Data Scenarios" @default.
- W4386629098 cites W180836830 @default.
- W4386629098 cites W1812453514 @default.
- W4386629098 cites W1967129449 @default.
- W4386629098 cites W1967955389 @default.
- W4386629098 cites W1978128908 @default.
- W4386629098 cites W1992656882 @default.
- W4386629098 cites W1998442441 @default.
- W4386629098 cites W2002115844 @default.
- W4386629098 cites W2004630602 @default.
- W4386629098 cites W2019814461 @default.
- W4386629098 cites W2039579272 @default.
- W4386629098 cites W2084742474 @default.
- W4386629098 cites W2089342818 @default.
- W4386629098 cites W2093608477 @default.
- W4386629098 cites W2153635508 @default.
- W4386629098 cites W2171635747 @default.
- W4386629098 cites W2317582304 @default.
- W4386629098 cites W2512426578 @default.
- W4386629098 cites W2547640157 @default.
- W4386629098 cites W2553423198 @default.
- W4386629098 cites W2619390517 @default.
- W4386629098 cites W2749106749 @default.
- W4386629098 cites W2751773190 @default.
- W4386629098 cites W2767489162 @default.
- W4386629098 cites W2792263887 @default.
- W4386629098 cites W2801156310 @default.
- W4386629098 cites W2884634948 @default.
- W4386629098 cites W2885992586 @default.
- W4386629098 cites W2887901282 @default.
- W4386629098 cites W2889323772 @default.
- W4386629098 cites W2920819147 @default.
- W4386629098 cites W2921467030 @default.
- W4386629098 cites W2936420175 @default.
- W4386629098 cites W2944755434 @default.
- W4386629098 cites W2961472717 @default.
- W4386629098 cites W2979474917 @default.
- W4386629098 cites W3003515180 @default.
- W4386629098 cites W3010047009 @default.
- W4386629098 cites W3043392635 @default.
- W4386629098 cites W3126940313 @default.
- W4386629098 cites W3159387031 @default.
- W4386629098 cites W3190884587 @default.
- W4386629098 cites W4225317010 @default.
- W4386629098 cites W4297962132 @default.
- W4386629098 cites W4323313475 @default.
- W4386629098 cites W751718722 @default.
- W4386629098 doi "https://doi.org/10.3390/agronomy13092366" @default.
- W4386629098 hasPublicationYear "2023" @default.
- W4386629098 type Work @default.
- W4386629098 citedByCount "0" @default.
- W4386629098 crossrefType "journal-article" @default.
- W4386629098 hasAuthorship W4386629098A5002406291 @default.
- W4386629098 hasAuthorship W4386629098A5018012006 @default.
- W4386629098 hasAuthorship W4386629098A5044767795 @default.
- W4386629098 hasAuthorship W4386629098A5049307051 @default.
- W4386629098 hasAuthorship W4386629098A5066130123 @default.
- W4386629098 hasAuthorship W4386629098A5069980323 @default.
- W4386629098 hasAuthorship W4386629098A5070574323 @default.
- W4386629098 hasAuthorship W4386629098A5086805465 @default.
- W4386629098 hasAuthorship W4386629098A5091804441 @default.
- W4386629098 hasBestOaLocation W43866290981 @default.
- W4386629098 hasConcept C119857082 @default.
- W4386629098 hasConcept C122523270 @default.
- W4386629098 hasConcept C12267149 @default.
- W4386629098 hasConcept C123046963 @default.
- W4386629098 hasConcept C132651083 @default.
- W4386629098 hasConcept C13280743 @default.
- W4386629098 hasConcept C153294291 @default.
- W4386629098 hasConcept C158960510 @default.
- W4386629098 hasConcept C176783924 @default.
- W4386629098 hasConcept C18903297 @default.
- W4386629098 hasConcept C205649164 @default.
- W4386629098 hasConcept C2524010 @default.
- W4386629098 hasConcept C2780554747 @default.
- W4386629098 hasConcept C33923547 @default.
- W4386629098 hasConcept C39432304 @default.
- W4386629098 hasConcept C41008148 @default.
- W4386629098 hasConcept C42683663 @default.
- W4386629098 hasConcept C50644808 @default.
- W4386629098 hasConcept C58640448 @default.
- W4386629098 hasConcept C6350597 @default.
- W4386629098 hasConcept C86803240 @default.
- W4386629098 hasConceptScore W4386629098C119857082 @default.
- W4386629098 hasConceptScore W4386629098C122523270 @default.