Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386632856> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4386632856 endingPage "577" @default.
- W4386632856 startingPage "565" @default.
- W4386632856 abstract "The prevalence of memes on social media has created the need to sentiment analyze their underlying meanings for censoring harmful content. Meme censoring systems by machine learning raise the need for a semi-supervised learning solution to take advantage of the large number of unlabeled memes available on the internet and make the annotation process less challenging. Moreover, the approach needs to utilize multimodal data as memes’ meanings usually come from both images and texts. This research proposes a multimodal semi-supervised learning approach that outperforms other multimodal semi-supervised learning and supervised learning state-of-the-art models on two datasets, the Multimedia Automatic Misogyny Identification and Hateful Memes dataset. Building on the insights gained from Contrastive Language-Image Pre-training, which is an effective multimodal learning technique, this research introduces SemiMemes, a novel training method that combines auto-encoder and classification task to make use of the resourceful unlabeled data." @default.
- W4386632856 created "2023-09-13" @default.
- W4386632856 creator A5000368472 @default.
- W4386632856 creator A5024061356 @default.
- W4386632856 creator A5064950199 @default.
- W4386632856 creator A5085273541 @default.
- W4386632856 date "2023-01-01" @default.
- W4386632856 modified "2023-09-27" @default.
- W4386632856 title "SemiMemes: A Semi-supervised Learning Approach for Multimodal Memes Analysis" @default.
- W4386632856 cites W1677182931 @default.
- W4386632856 cites W1861492603 @default.
- W4386632856 cites W2006147162 @default.
- W4386632856 cites W2007972815 @default.
- W4386632856 cites W2155803963 @default.
- W4386632856 cites W2965116998 @default.
- W4386632856 cites W2997072756 @default.
- W4386632856 cites W3083650259 @default.
- W4386632856 cites W3094965760 @default.
- W4386632856 cites W3095707208 @default.
- W4386632856 cites W3115532187 @default.
- W4386632856 cites W3174604160 @default.
- W4386632856 cites W4283792295 @default.
- W4386632856 cites W4287855069 @default.
- W4386632856 cites W4287887784 @default.
- W4386632856 cites W4306294780 @default.
- W4386632856 doi "https://doi.org/10.1007/978-3-031-41456-5_43" @default.
- W4386632856 hasPublicationYear "2023" @default.
- W4386632856 type Work @default.
- W4386632856 citedByCount "0" @default.
- W4386632856 crossrefType "book-chapter" @default.
- W4386632856 hasAuthorship W4386632856A5000368472 @default.
- W4386632856 hasAuthorship W4386632856A5024061356 @default.
- W4386632856 hasAuthorship W4386632856A5064950199 @default.
- W4386632856 hasAuthorship W4386632856A5085273541 @default.
- W4386632856 hasConcept C119857082 @default.
- W4386632856 hasConcept C136389625 @default.
- W4386632856 hasConcept C154945302 @default.
- W4386632856 hasConcept C162324750 @default.
- W4386632856 hasConcept C187736073 @default.
- W4386632856 hasConcept C204321447 @default.
- W4386632856 hasConcept C2776321320 @default.
- W4386632856 hasConcept C2780451532 @default.
- W4386632856 hasConcept C2780660688 @default.
- W4386632856 hasConcept C41008148 @default.
- W4386632856 hasConcept C50644808 @default.
- W4386632856 hasConcept C58973888 @default.
- W4386632856 hasConceptScore W4386632856C119857082 @default.
- W4386632856 hasConceptScore W4386632856C136389625 @default.
- W4386632856 hasConceptScore W4386632856C154945302 @default.
- W4386632856 hasConceptScore W4386632856C162324750 @default.
- W4386632856 hasConceptScore W4386632856C187736073 @default.
- W4386632856 hasConceptScore W4386632856C204321447 @default.
- W4386632856 hasConceptScore W4386632856C2776321320 @default.
- W4386632856 hasConceptScore W4386632856C2780451532 @default.
- W4386632856 hasConceptScore W4386632856C2780660688 @default.
- W4386632856 hasConceptScore W4386632856C41008148 @default.
- W4386632856 hasConceptScore W4386632856C50644808 @default.
- W4386632856 hasConceptScore W4386632856C58973888 @default.
- W4386632856 hasLocation W43866328561 @default.
- W4386632856 hasOpenAccess W4386632856 @default.
- W4386632856 hasPrimaryLocation W43866328561 @default.
- W4386632856 hasRelatedWork W122912556 @default.
- W4386632856 hasRelatedWork W1756896031 @default.
- W4386632856 hasRelatedWork W3025582806 @default.
- W4386632856 hasRelatedWork W3094076422 @default.
- W4386632856 hasRelatedWork W3162567751 @default.
- W4386632856 hasRelatedWork W4285260836 @default.
- W4386632856 hasRelatedWork W4306321456 @default.
- W4386632856 hasRelatedWork W4312414840 @default.
- W4386632856 hasRelatedWork W4319309271 @default.
- W4386632856 hasRelatedWork W4386025632 @default.
- W4386632856 isParatext "false" @default.
- W4386632856 isRetracted "false" @default.
- W4386632856 workType "book-chapter" @default.