Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386632867> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4386632867 endingPage "96" @default.
- W4386632867 startingPage "84" @default.
- W4386632867 abstract "Recently, Deep Learning (DL)-based unmixing techniques have gained popularity owing to the robust learning of Deep Neural Networks (DNNs). In particular, the Autoencoder (AE) model, as a baseline network for unmixing, performs well in Hyperspectral Unmixing (HU) by automatically learning a new representation and recovering original data. However, patch-wise AE based architecture, which incorporates both spectral and spatial information through convolutional filters may blur the abundance maps due to the fixed kernel shape of the used window size. To cope with the above issue, we propose in this paper a novel methodology based on graph DL called DNGAE. Unlike the pixel-wise or patch-wise Convolutional AE (CAE), our proposed method incorporates the complementary spatial information based on graph spectral similarity. A neighborhood graph based on band correlations is firstly constructed. Then, our method attempts to aggregate similar spectra from the neighboring pixels of a target pixel. Consequently, this leads to better quality of both extracted endmembers and abundances. Extensive experiments performed on two real HSI benchmarks confirm the effectiveness of our proposed method compared to other DL models." @default.
- W4386632867 created "2023-09-13" @default.
- W4386632867 creator A5034933711 @default.
- W4386632867 creator A5050760333 @default.
- W4386632867 creator A5053542801 @default.
- W4386632867 creator A5084022253 @default.
- W4386632867 date "2023-01-01" @default.
- W4386632867 modified "2023-10-17" @default.
- W4386632867 title "DNGAE: Deep Neighborhood Graph Autoencoder for Robust Blind Hyperspectral Unmixing" @default.
- W4386632867 cites W2004207873 @default.
- W4386632867 cites W2081555128 @default.
- W4386632867 cites W2095343758 @default.
- W4386632867 cites W2304496602 @default.
- W4386632867 cites W2548252967 @default.
- W4386632867 cites W2771346875 @default.
- W4386632867 cites W2774528199 @default.
- W4386632867 cites W2886042776 @default.
- W4386632867 cites W2894115892 @default.
- W4386632867 cites W2911419410 @default.
- W4386632867 cites W2963371848 @default.
- W4386632867 cites W2975890842 @default.
- W4386632867 cites W3028000844 @default.
- W4386632867 cites W4210257598 @default.
- W4386632867 cites W4225286361 @default.
- W4386632867 cites W4283709627 @default.
- W4386632867 doi "https://doi.org/10.1007/978-3-031-41456-5_7" @default.
- W4386632867 hasPublicationYear "2023" @default.
- W4386632867 type Work @default.
- W4386632867 citedByCount "0" @default.
- W4386632867 crossrefType "book-chapter" @default.
- W4386632867 hasAuthorship W4386632867A5034933711 @default.
- W4386632867 hasAuthorship W4386632867A5050760333 @default.
- W4386632867 hasAuthorship W4386632867A5053542801 @default.
- W4386632867 hasAuthorship W4386632867A5084022253 @default.
- W4386632867 hasConcept C101738243 @default.
- W4386632867 hasConcept C108583219 @default.
- W4386632867 hasConcept C114614502 @default.
- W4386632867 hasConcept C132525143 @default.
- W4386632867 hasConcept C153180895 @default.
- W4386632867 hasConcept C154945302 @default.
- W4386632867 hasConcept C159078339 @default.
- W4386632867 hasConcept C160633673 @default.
- W4386632867 hasConcept C33923547 @default.
- W4386632867 hasConcept C41008148 @default.
- W4386632867 hasConcept C59404180 @default.
- W4386632867 hasConcept C74193536 @default.
- W4386632867 hasConcept C80444323 @default.
- W4386632867 hasConcept C81363708 @default.
- W4386632867 hasConceptScore W4386632867C101738243 @default.
- W4386632867 hasConceptScore W4386632867C108583219 @default.
- W4386632867 hasConceptScore W4386632867C114614502 @default.
- W4386632867 hasConceptScore W4386632867C132525143 @default.
- W4386632867 hasConceptScore W4386632867C153180895 @default.
- W4386632867 hasConceptScore W4386632867C154945302 @default.
- W4386632867 hasConceptScore W4386632867C159078339 @default.
- W4386632867 hasConceptScore W4386632867C160633673 @default.
- W4386632867 hasConceptScore W4386632867C33923547 @default.
- W4386632867 hasConceptScore W4386632867C41008148 @default.
- W4386632867 hasConceptScore W4386632867C59404180 @default.
- W4386632867 hasConceptScore W4386632867C74193536 @default.
- W4386632867 hasConceptScore W4386632867C80444323 @default.
- W4386632867 hasConceptScore W4386632867C81363708 @default.
- W4386632867 hasLocation W43866328671 @default.
- W4386632867 hasLocation W43866328672 @default.
- W4386632867 hasOpenAccess W4386632867 @default.
- W4386632867 hasPrimaryLocation W43866328671 @default.
- W4386632867 hasRelatedWork W2067727414 @default.
- W4386632867 hasRelatedWork W2891059443 @default.
- W4386632867 hasRelatedWork W2983142544 @default.
- W4386632867 hasRelatedWork W3133533225 @default.
- W4386632867 hasRelatedWork W3181622257 @default.
- W4386632867 hasRelatedWork W3208386644 @default.
- W4386632867 hasRelatedWork W3208888551 @default.
- W4386632867 hasRelatedWork W4220682630 @default.
- W4386632867 hasRelatedWork W4281663961 @default.
- W4386632867 hasRelatedWork W4313561566 @default.
- W4386632867 isParatext "false" @default.
- W4386632867 isRetracted "false" @default.
- W4386632867 workType "book-chapter" @default.