Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386636172> ?p ?o ?g. }
- W4386636172 abstract "Important decisions in local agricultural policy and practice often hinge on the soil's chemical composition. Raman spectroscopy offers a rapid noninvasive means to quantify the constituents of complex organic systems. But the application of Raman spectroscopy to soils presents a multifaceted challenge due to organic/mineral compositional complexity and spectral interference arising from overwhelming fluorescence. The present work compares methodologies with the capacity to help overcome common obstacles that arise in the analysis of soils. We created conditions representative of these challenges by combining varying proportions of six amino acids commonly found in soils with fluorescent bentonite clay and coarse mineral components. Referring to an extensive data set of Raman spectra, we compare the performance of the convolutional neural network (CNN) and partial least-squares regression (PLSR) multivariate models for amino acid composition. Strategies employing volume-averaged spectral sampling and data preprocessing algorithms improve the predictive power of these models. Our average test R2 for PLSR models exceeds 0.89 and approaches 0.98, depending on the complexity of the matrix, whereas CNN yields an R2 range from 0.91 to 0.97, demonstrating that classic PLSR and CNN perform comparably, except in cases where the signal-to-noise ratio of the organic component is very low, whereupon CNN models outperform. Artificially isolating two of the most prevalent obstacles in evaluating the Raman spectra of soils, we have characterized the effect of each obstacle on the performance of machine learning models in the absence of other complexities. These results highlight important considerations and modeling strategies necessary to improve the Raman analysis of organic compounds in complex mixtures in the presence of mineral spectral components and significant fluorescence." @default.
- W4386636172 created "2023-09-13" @default.
- W4386636172 creator A5008627358 @default.
- W4386636172 creator A5012995521 @default.
- W4386636172 creator A5015862829 @default.
- W4386636172 creator A5024295991 @default.
- W4386636172 creator A5027036385 @default.
- W4386636172 creator A5037972731 @default.
- W4386636172 creator A5043580750 @default.
- W4386636172 creator A5055037967 @default.
- W4386636172 creator A5085052462 @default.
- W4386636172 date "2023-09-12" @default.
- W4386636172 modified "2023-10-18" @default.
- W4386636172 title "Machine Learning Analysis of Raman Spectra To Quantify the Organic Constituents in Complex Organic–Mineral Mixtures" @default.
- W4386636172 cites W1427363863 @default.
- W4386636172 cites W1525122831 @default.
- W4386636172 cites W1591022932 @default.
- W4386636172 cites W1971564594 @default.
- W4386636172 cites W1973207880 @default.
- W4386636172 cites W1982814196 @default.
- W4386636172 cites W1987542277 @default.
- W4386636172 cites W1994413571 @default.
- W4386636172 cites W1999155291 @default.
- W4386636172 cites W2009649496 @default.
- W4386636172 cites W2019916133 @default.
- W4386636172 cites W2039240409 @default.
- W4386636172 cites W2062979675 @default.
- W4386636172 cites W2097647963 @default.
- W4386636172 cites W2112796928 @default.
- W4386636172 cites W2132612352 @default.
- W4386636172 cites W2158863190 @default.
- W4386636172 cites W2261562964 @default.
- W4386636172 cites W2329390681 @default.
- W4386636172 cites W2995723864 @default.
- W4386636172 cites W3006941379 @default.
- W4386636172 cites W3115642906 @default.
- W4386636172 cites W3182706339 @default.
- W4386636172 cites W3200092468 @default.
- W4386636172 cites W4210942305 @default.
- W4386636172 cites W4248083651 @default.
- W4386636172 cites W4249735787 @default.
- W4386636172 cites W4281835951 @default.
- W4386636172 cites W4296330077 @default.
- W4386636172 doi "https://doi.org/10.1021/acs.analchem.3c02348" @default.
- W4386636172 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37698955" @default.
- W4386636172 hasPublicationYear "2023" @default.
- W4386636172 type Work @default.
- W4386636172 citedByCount "0" @default.
- W4386636172 crossrefType "journal-article" @default.
- W4386636172 hasAuthorship W4386636172A5008627358 @default.
- W4386636172 hasAuthorship W4386636172A5012995521 @default.
- W4386636172 hasAuthorship W4386636172A5015862829 @default.
- W4386636172 hasAuthorship W4386636172A5024295991 @default.
- W4386636172 hasAuthorship W4386636172A5027036385 @default.
- W4386636172 hasAuthorship W4386636172A5037972731 @default.
- W4386636172 hasAuthorship W4386636172A5043580750 @default.
- W4386636172 hasAuthorship W4386636172A5055037967 @default.
- W4386636172 hasAuthorship W4386636172A5085052462 @default.
- W4386636172 hasBestOaLocation W43866361721 @default.
- W4386636172 hasConcept C119857082 @default.
- W4386636172 hasConcept C120665830 @default.
- W4386636172 hasConcept C121332964 @default.
- W4386636172 hasConcept C153180895 @default.
- W4386636172 hasConcept C154945302 @default.
- W4386636172 hasConcept C159390177 @default.
- W4386636172 hasConcept C159750122 @default.
- W4386636172 hasConcept C185592680 @default.
- W4386636172 hasConcept C186060115 @default.
- W4386636172 hasConcept C22354355 @default.
- W4386636172 hasConcept C27438332 @default.
- W4386636172 hasConcept C39432304 @default.
- W4386636172 hasConcept C40003534 @default.
- W4386636172 hasConcept C41008148 @default.
- W4386636172 hasConcept C86803240 @default.
- W4386636172 hasConceptScore W4386636172C119857082 @default.
- W4386636172 hasConceptScore W4386636172C120665830 @default.
- W4386636172 hasConceptScore W4386636172C121332964 @default.
- W4386636172 hasConceptScore W4386636172C153180895 @default.
- W4386636172 hasConceptScore W4386636172C154945302 @default.
- W4386636172 hasConceptScore W4386636172C159390177 @default.
- W4386636172 hasConceptScore W4386636172C159750122 @default.
- W4386636172 hasConceptScore W4386636172C185592680 @default.
- W4386636172 hasConceptScore W4386636172C186060115 @default.
- W4386636172 hasConceptScore W4386636172C22354355 @default.
- W4386636172 hasConceptScore W4386636172C27438332 @default.
- W4386636172 hasConceptScore W4386636172C39432304 @default.
- W4386636172 hasConceptScore W4386636172C40003534 @default.
- W4386636172 hasConceptScore W4386636172C41008148 @default.
- W4386636172 hasConceptScore W4386636172C86803240 @default.
- W4386636172 hasFunder F4320322675 @default.
- W4386636172 hasFunder F4320334593 @default.
- W4386636172 hasLocation W43866361721 @default.
- W4386636172 hasLocation W43866361722 @default.
- W4386636172 hasOpenAccess W4386636172 @default.
- W4386636172 hasPrimaryLocation W43866361721 @default.
- W4386636172 hasRelatedWork W1984594863 @default.
- W4386636172 hasRelatedWork W2020994569 @default.
- W4386636172 hasRelatedWork W2085553065 @default.
- W4386636172 hasRelatedWork W2097251644 @default.
- W4386636172 hasRelatedWork W2380927352 @default.