Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386645265> ?p ?o ?g. }
- W4386645265 abstract "Abstract High-grade serous ovarian cancer is the most lethal gynaecological malignancy. Detailed molecular studies have revealed marked intra-patient heterogeneity at the tumour microenvironment level, likely contributing to poor prognosis. Despite large quantities of clinical, molecular and imaging data on ovarian cancer being accumulated worldwide and the rise of high-throughput computing, data frequently remain siloed and are thus inaccessible for integrated analyses. Only a minority of studies on ovarian cancer have set out to harness artificial intelligence (AI) for the integration of multiomics data and for developing powerful algorithms that capture the characteristics of ovarian cancer at multiple scales and levels. Clinical data, serum markers, and imaging data were most frequently used, followed by genomics and transcriptomics. The current literature proves that integrative multiomics approaches outperform models based on single data types and indicates that imaging can be used for the longitudinal tracking of tumour heterogeneity in space and potentially over time. This review presents an overview of studies that integrated two or more data types to develop AI-based classifiers or prediction models. Relevance statement Integrative multiomics models for ovarian cancer outperform models using single data types for classification, prognostication, and predictive tasks. Key points • This review presents studies using multiomics and artificial intelligence in ovarian cancer. • Current literature proves that integrative multiomics outperform models using single data types. • Around 60% of studies used a combination of imaging with clinical data. • The combination of genomics and transcriptomics with imaging data was infrequently used. Graphical Abstract" @default.
- W4386645265 created "2023-09-13" @default.
- W4386645265 creator A5014141804 @default.
- W4386645265 creator A5020071712 @default.
- W4386645265 creator A5028460960 @default.
- W4386645265 creator A5066922937 @default.
- W4386645265 creator A5076625992 @default.
- W4386645265 creator A5078958139 @default.
- W4386645265 creator A5082840545 @default.
- W4386645265 creator A5084444188 @default.
- W4386645265 date "2023-09-13" @default.
- W4386645265 modified "2023-09-26" @default.
- W4386645265 title "Ovarian cancer beyond imaging: integration of AI and multiomics biomarkers" @default.
- W4386645265 cites W1575049269 @default.
- W4386645265 cites W1979693095 @default.
- W4386645265 cites W2049357400 @default.
- W4386645265 cites W2063684969 @default.
- W4386645265 cites W2099259943 @default.
- W4386645265 cites W2128739912 @default.
- W4386645265 cites W2160139566 @default.
- W4386645265 cites W2164532516 @default.
- W4386645265 cites W2402730620 @default.
- W4386645265 cites W2595718694 @default.
- W4386645265 cites W2748037493 @default.
- W4386645265 cites W2800654890 @default.
- W4386645265 cites W2802934060 @default.
- W4386645265 cites W2899491031 @default.
- W4386645265 cites W2919115771 @default.
- W4386645265 cites W2938809977 @default.
- W4386645265 cites W2948693952 @default.
- W4386645265 cites W2953073515 @default.
- W4386645265 cites W2953270703 @default.
- W4386645265 cites W2979359612 @default.
- W4386645265 cites W3014382673 @default.
- W4386645265 cites W3026063446 @default.
- W4386645265 cites W3047538950 @default.
- W4386645265 cites W3080469858 @default.
- W4386645265 cites W3099203862 @default.
- W4386645265 cites W3107151355 @default.
- W4386645265 cites W3113033270 @default.
- W4386645265 cites W3127855885 @default.
- W4386645265 cites W3127866002 @default.
- W4386645265 cites W3136219796 @default.
- W4386645265 cites W3138022488 @default.
- W4386645265 cites W3152691420 @default.
- W4386645265 cites W3155054952 @default.
- W4386645265 cites W3158596653 @default.
- W4386645265 cites W3163490502 @default.
- W4386645265 cites W3183467948 @default.
- W4386645265 cites W3184817790 @default.
- W4386645265 cites W3204330033 @default.
- W4386645265 cites W3206214356 @default.
- W4386645265 cites W3206841404 @default.
- W4386645265 cites W3208813691 @default.
- W4386645265 cites W3208839972 @default.
- W4386645265 cites W3212187160 @default.
- W4386645265 cites W4200215127 @default.
- W4386645265 cites W4205525424 @default.
- W4386645265 cites W4210438451 @default.
- W4386645265 cites W4220999976 @default.
- W4386645265 cites W4221018958 @default.
- W4386645265 cites W4223646967 @default.
- W4386645265 cites W4229034733 @default.
- W4386645265 cites W4281817558 @default.
- W4386645265 cites W4283645969 @default.
- W4386645265 cites W4284678329 @default.
- W4386645265 cites W4291019191 @default.
- W4386645265 cites W4296116547 @default.
- W4386645265 cites W4296737713 @default.
- W4386645265 cites W4315498045 @default.
- W4386645265 doi "https://doi.org/10.1186/s41747-023-00364-7" @default.
- W4386645265 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37700218" @default.
- W4386645265 hasPublicationYear "2023" @default.
- W4386645265 type Work @default.
- W4386645265 citedByCount "0" @default.
- W4386645265 crossrefType "journal-article" @default.
- W4386645265 hasAuthorship W4386645265A5014141804 @default.
- W4386645265 hasAuthorship W4386645265A5020071712 @default.
- W4386645265 hasAuthorship W4386645265A5028460960 @default.
- W4386645265 hasAuthorship W4386645265A5066922937 @default.
- W4386645265 hasAuthorship W4386645265A5076625992 @default.
- W4386645265 hasAuthorship W4386645265A5078958139 @default.
- W4386645265 hasAuthorship W4386645265A5082840545 @default.
- W4386645265 hasAuthorship W4386645265A5084444188 @default.
- W4386645265 hasBestOaLocation W43866452651 @default.
- W4386645265 hasConcept C121608353 @default.
- W4386645265 hasConcept C126322002 @default.
- W4386645265 hasConcept C154945302 @default.
- W4386645265 hasConcept C2780427987 @default.
- W4386645265 hasConcept C41008148 @default.
- W4386645265 hasConcept C60644358 @default.
- W4386645265 hasConcept C70721500 @default.
- W4386645265 hasConcept C71924100 @default.
- W4386645265 hasConcept C86803240 @default.
- W4386645265 hasConceptScore W4386645265C121608353 @default.
- W4386645265 hasConceptScore W4386645265C126322002 @default.
- W4386645265 hasConceptScore W4386645265C154945302 @default.
- W4386645265 hasConceptScore W4386645265C2780427987 @default.
- W4386645265 hasConceptScore W4386645265C41008148 @default.
- W4386645265 hasConceptScore W4386645265C60644358 @default.