Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386648367> ?p ?o ?g. }
- W4386648367 abstract "Abstract Introduction Worldwide, pancreatic cancer has a poor prognosis. Earlier diagnosis may improve survival by enabling curative treatment. However, non-specific symptoms and a lack of suitable biomarkers make this challenging. Statistical and machine learning prediction models using risk factors such as patient demographics, symptoms and blood tests are being developed for clinical use to improve earlier diagnosis. One example is the Enriching New-onset Diabetes for Pancreatic Cancer (ENDPAC) model, which employs patients’ age, blood glucose and weight changes to provide pancreatic cancer risk scores. However, ENDPAC has yet to be used in clinical settings. In the United Kingdom (UK), blood tests and weight measurements are routinely collected in primary care which, given primary care’s central role in assessing and addressing patients’ cancer risk, makes it an ideal setting to assess ENDPAC’s feasibility. Methods and analysis DEFEND PRIME will be a multi-centre observational study determining the feasibility of extracting data from primary care providers in the UK to calculate ENDPAC scores. After developing the data extraction methods, 20 UK GP practices will provide anonymised data on participants aged 50+ years, with a glycated haemoglobin (HbA1c) test result of ≥ 48 mmol/mol and no previous abnormal HbA1c results. ENDPAC scores will be calculated, and descriptive statistics used to summarise the cohort’s demographics and assess data quality. Findings will inform the development of a future clinical study, in which ENDPAC scores will be calculated and participants with elevated scores will be invited for clinical workup. Ethics and dissemination This project has been reviewed by the University of Surrey University Ethics Committee and received a favourable ethical opinion (FHMS 22-23 151 EGA). Study findings will be presented at scientific meetings and published in international peer-reviewed journals. Participating GP practices, clinical leads and policy makers will be provided with summaries of the findings. Strengths and limitations of this study’s methods Early computerisation of UK primary care, incorporating linkage to pathology systems combined with pay-for-performance for chronic disease management including diabetes, helps to ensure population-wide data. The extraction methods will permit validation of the extracted data by GP practice staff prior to transfer to the research team. Using HbA1c results only to define new-onset diabetes means this study is not impacted by the quality of diabetes diagnosis coding in primary care. This study will raise awareness of new-onset diabetes’ association with pancreatic cancer within the primary care community. The study period includes the COVID-19 pandemic, thus the data within this period may not reflect data obtained before or after the pandemic." @default.
- W4386648367 created "2023-09-13" @default.
- W4386648367 creator A5001141355 @default.
- W4386648367 creator A5007672763 @default.
- W4386648367 creator A5014935219 @default.
- W4386648367 creator A5016874376 @default.
- W4386648367 creator A5025580494 @default.
- W4386648367 creator A5029222347 @default.
- W4386648367 creator A5030588890 @default.
- W4386648367 creator A5036052898 @default.
- W4386648367 creator A5037464744 @default.
- W4386648367 creator A5053962983 @default.
- W4386648367 creator A5056940844 @default.
- W4386648367 creator A5065866497 @default.
- W4386648367 creator A5087145085 @default.
- W4386648367 date "2023-09-12" @default.
- W4386648367 modified "2023-09-27" @default.
- W4386648367 title "Determining the feasibility of calculating pancreatic cancer risk scores for people with new-onset diabetes in primary care (DEFEND PRIME): study protocol" @default.
- W4386648367 cites W154377515 @default.
- W4386648367 cites W1971850847 @default.
- W4386648367 cites W2005438436 @default.
- W4386648367 cites W2025232681 @default.
- W4386648367 cites W2033654850 @default.
- W4386648367 cites W2057443209 @default.
- W4386648367 cites W2071190021 @default.
- W4386648367 cites W2103417556 @default.
- W4386648367 cites W2127816293 @default.
- W4386648367 cites W2155146717 @default.
- W4386648367 cites W2169816791 @default.
- W4386648367 cites W2183862653 @default.
- W4386648367 cites W2312931650 @default.
- W4386648367 cites W2313957206 @default.
- W4386648367 cites W2560633348 @default.
- W4386648367 cites W2617093506 @default.
- W4386648367 cites W2734646423 @default.
- W4386648367 cites W2752023293 @default.
- W4386648367 cites W2770675262 @default.
- W4386648367 cites W2789216479 @default.
- W4386648367 cites W2802707526 @default.
- W4386648367 cites W2803190522 @default.
- W4386648367 cites W2910044313 @default.
- W4386648367 cites W2943347371 @default.
- W4386648367 cites W2970575819 @default.
- W4386648367 cites W3109708434 @default.
- W4386648367 cites W3111000697 @default.
- W4386648367 cites W3128187757 @default.
- W4386648367 cites W3128646645 @default.
- W4386648367 cites W3136362669 @default.
- W4386648367 cites W3141609587 @default.
- W4386648367 cites W3202884481 @default.
- W4386648367 cites W4214746864 @default.
- W4386648367 cites W4229835970 @default.
- W4386648367 cites W4243296800 @default.
- W4386648367 cites W4245199299 @default.
- W4386648367 cites W4295235087 @default.
- W4386648367 cites W4295280957 @default.
- W4386648367 cites W4296793403 @default.
- W4386648367 doi "https://doi.org/10.1101/2023.09.12.23295372" @default.
- W4386648367 hasPublicationYear "2023" @default.
- W4386648367 type Work @default.
- W4386648367 citedByCount "0" @default.
- W4386648367 crossrefType "posted-content" @default.
- W4386648367 hasAuthorship W4386648367A5001141355 @default.
- W4386648367 hasAuthorship W4386648367A5007672763 @default.
- W4386648367 hasAuthorship W4386648367A5014935219 @default.
- W4386648367 hasAuthorship W4386648367A5016874376 @default.
- W4386648367 hasAuthorship W4386648367A5025580494 @default.
- W4386648367 hasAuthorship W4386648367A5029222347 @default.
- W4386648367 hasAuthorship W4386648367A5030588890 @default.
- W4386648367 hasAuthorship W4386648367A5036052898 @default.
- W4386648367 hasAuthorship W4386648367A5037464744 @default.
- W4386648367 hasAuthorship W4386648367A5053962983 @default.
- W4386648367 hasAuthorship W4386648367A5056940844 @default.
- W4386648367 hasAuthorship W4386648367A5065866497 @default.
- W4386648367 hasAuthorship W4386648367A5087145085 @default.
- W4386648367 hasConcept C105795698 @default.
- W4386648367 hasConcept C121608353 @default.
- W4386648367 hasConcept C126322002 @default.
- W4386648367 hasConcept C134018914 @default.
- W4386648367 hasConcept C142724271 @default.
- W4386648367 hasConcept C144024400 @default.
- W4386648367 hasConcept C149923435 @default.
- W4386648367 hasConcept C204787440 @default.
- W4386648367 hasConcept C23131810 @default.
- W4386648367 hasConcept C2780084366 @default.
- W4386648367 hasConcept C2780210213 @default.
- W4386648367 hasConcept C2780385302 @default.
- W4386648367 hasConcept C33923547 @default.
- W4386648367 hasConcept C39896193 @default.
- W4386648367 hasConcept C512399662 @default.
- W4386648367 hasConcept C555293320 @default.
- W4386648367 hasConcept C71924100 @default.
- W4386648367 hasConcept C72563966 @default.
- W4386648367 hasConceptScore W4386648367C105795698 @default.
- W4386648367 hasConceptScore W4386648367C121608353 @default.
- W4386648367 hasConceptScore W4386648367C126322002 @default.
- W4386648367 hasConceptScore W4386648367C134018914 @default.
- W4386648367 hasConceptScore W4386648367C142724271 @default.
- W4386648367 hasConceptScore W4386648367C144024400 @default.
- W4386648367 hasConceptScore W4386648367C149923435 @default.