Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386688229> ?p ?o ?g. }
- W4386688229 abstract "Data reconstruction of rotating turbulent snapshots is investigated utilizing data-driven tools. This problem is crucial for numerous geophysical applications and fundamental aspects, given the concurrent effects of direct and inverse energy cascades. Additionally, benchmarking of various reconstruction techniques is essential to assess the trade-off between quantitative supremacy, implementation complexity and explicability. In this study, we use linear and nonlinear tools based on the proper orthogonal decomposition (POD) and generative adversarial network (GAN) for reconstructing rotating turbulence snapshots with spatial damages (inpainting). We focus on accurately reproducing both statistical properties and instantaneous velocity fields. Different gap sizes and gap geometries are investigated in order to assess the importance of coherency and multi-scale properties of the missing information. Surprisingly enough, concerning point-wise reconstruction, the nonlinear GAN does not outperform one of the linear POD techniques. On the other hand, the supremacy of the GAN approach is shown when the statistical multi-scale properties are compared. Similarly, extreme events in the gap region are better predicted when using GAN. The balance between point-wise error and statistical properties is controlled by the adversarial ratio, which determines the relative importance of the generator and the discriminator in the GAN training." @default.
- W4386688229 created "2023-09-13" @default.
- W4386688229 creator A5005619051 @default.
- W4386688229 creator A5013500038 @default.
- W4386688229 creator A5015894671 @default.
- W4386688229 creator A5040585483 @default.
- W4386688229 creator A5053952505 @default.
- W4386688229 creator A5054613380 @default.
- W4386688229 date "2023-09-12" @default.
- W4386688229 modified "2023-09-28" @default.
- W4386688229 title "Multi-scale reconstruction of turbulent rotating flows with proper orthogonal decomposition and generative adversarial networks" @default.
- W4386688229 cites W1410907832 @default.
- W4386688229 cites W1517567324 @default.
- W4386688229 cites W1655403841 @default.
- W4386688229 cites W1661478428 @default.
- W4386688229 cites W1954793758 @default.
- W4386688229 cites W1964319479 @default.
- W4386688229 cites W1973800445 @default.
- W4386688229 cites W1988115241 @default.
- W4386688229 cites W1988358579 @default.
- W4386688229 cites W1995945562 @default.
- W4386688229 cites W1998743008 @default.
- W4386688229 cites W2002002929 @default.
- W4386688229 cites W2005068921 @default.
- W4386688229 cites W2014468209 @default.
- W4386688229 cites W2022539437 @default.
- W4386688229 cites W2037742515 @default.
- W4386688229 cites W2037896057 @default.
- W4386688229 cites W2038440736 @default.
- W4386688229 cites W2042457194 @default.
- W4386688229 cites W2050195777 @default.
- W4386688229 cites W2059787978 @default.
- W4386688229 cites W2071321776 @default.
- W4386688229 cites W2096450582 @default.
- W4386688229 cites W2117539524 @default.
- W4386688229 cites W2120101088 @default.
- W4386688229 cites W2123473837 @default.
- W4386688229 cites W2130259898 @default.
- W4386688229 cites W2133665775 @default.
- W4386688229 cites W2136211190 @default.
- W4386688229 cites W2137664016 @default.
- W4386688229 cites W2151970026 @default.
- W4386688229 cites W2194775991 @default.
- W4386688229 cites W2234443611 @default.
- W4386688229 cites W2336153637 @default.
- W4386688229 cites W2412409734 @default.
- W4386688229 cites W2549291376 @default.
- W4386688229 cites W2735882924 @default.
- W4386688229 cites W2750414474 @default.
- W4386688229 cites W2797287825 @default.
- W4386688229 cites W2798938551 @default.
- W4386688229 cites W2902480423 @default.
- W4386688229 cites W2914633448 @default.
- W4386688229 cites W2963420272 @default.
- W4386688229 cites W2965657554 @default.
- W4386688229 cites W2985383053 @default.
- W4386688229 cites W2996154946 @default.
- W4386688229 cites W3005641041 @default.
- W4386688229 cites W3010380629 @default.
- W4386688229 cites W3012591061 @default.
- W4386688229 cites W3035733053 @default.
- W4386688229 cites W3097042580 @default.
- W4386688229 cites W3102477591 @default.
- W4386688229 cites W3102980067 @default.
- W4386688229 cites W3103964896 @default.
- W4386688229 cites W3113027962 @default.
- W4386688229 cites W3114871366 @default.
- W4386688229 cites W3120515765 @default.
- W4386688229 cites W3182343885 @default.
- W4386688229 cites W3185689115 @default.
- W4386688229 cites W3206302539 @default.
- W4386688229 cites W4233734028 @default.
- W4386688229 cites W4234102482 @default.
- W4386688229 cites W4241116840 @default.
- W4386688229 cites W4243066586 @default.
- W4386688229 cites W4295138578 @default.
- W4386688229 cites W4313396509 @default.
- W4386688229 cites W4320497786 @default.
- W4386688229 cites W4367671808 @default.
- W4386688229 cites W4368355702 @default.
- W4386688229 cites W55912154 @default.
- W4386688229 doi "https://doi.org/10.1017/jfm.2023.573" @default.
- W4386688229 hasPublicationYear "2023" @default.
- W4386688229 type Work @default.
- W4386688229 citedByCount "0" @default.
- W4386688229 crossrefType "journal-article" @default.
- W4386688229 hasAuthorship W4386688229A5005619051 @default.
- W4386688229 hasAuthorship W4386688229A5013500038 @default.
- W4386688229 hasAuthorship W4386688229A5015894671 @default.
- W4386688229 hasAuthorship W4386688229A5040585483 @default.
- W4386688229 hasAuthorship W4386688229A5053952505 @default.
- W4386688229 hasAuthorship W4386688229A5054613380 @default.
- W4386688229 hasConcept C11413529 @default.
- W4386688229 hasConcept C121332964 @default.
- W4386688229 hasConcept C121864883 @default.
- W4386688229 hasConcept C154945302 @default.
- W4386688229 hasConcept C158622935 @default.
- W4386688229 hasConcept C163258240 @default.
- W4386688229 hasConcept C196558001 @default.
- W4386688229 hasConcept C2778755073 @default.