Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386688800> ?p ?o ?g. }
- W4386688800 abstract "The purpose of this research is to examine one of the most effective approaches for locating niche tourism attractions that varies by people, using a methodology that combines statistical analysis, deep learning visual image detection, and text mining. Using 30,013 posts with the hashtag #Seoul in English, the analysis focused on the Instagram posts’ time, dominant color, image visual content, and hashtag to identify niche tourism attractions. The analysis result shows that Instagram posts hashtag #Seoul that depicted “young women” and was uploaded in the evening with warm colors such as orange, yellow, and green received more “likes” than other postings. Furthermore, deep learning and text mining analysis were used to identify and forecast the actual image with the most likes in each sectoral domain, as classified by topic modeling, such as “young, woman, outdoor” and “table, plate, indoor.” Through these findings, this study identified niche hotspots of tourism attractions based on those destination image attributes in Instagram photos, which contributes to the popularity of Instagram postings. The methods and results will be particularly useful to marketers and researchers looking to uncover specialized tourism themes and combine popularity measurement with visual image analysis." @default.
- W4386688800 created "2023-09-13" @default.
- W4386688800 creator A5049333039 @default.
- W4386688800 creator A5083680610 @default.
- W4386688800 date "2023-09-11" @default.
- W4386688800 modified "2023-10-18" @default.
- W4386688800 title "Finding tourism niche on image-based social media: Integrating computational methods" @default.
- W4386688800 cites W1493240620 @default.
- W4386688800 cites W1878374081 @default.
- W4386688800 cites W1927727507 @default.
- W4386688800 cites W1973258108 @default.
- W4386688800 cites W2000141706 @default.
- W4386688800 cites W2003308666 @default.
- W4386688800 cites W2028829515 @default.
- W4386688800 cites W2029370198 @default.
- W4386688800 cites W2030122523 @default.
- W4386688800 cites W2034292143 @default.
- W4386688800 cites W2040882218 @default.
- W4386688800 cites W2044352597 @default.
- W4386688800 cites W2056207836 @default.
- W4386688800 cites W2068012282 @default.
- W4386688800 cites W2091299820 @default.
- W4386688800 cites W2101746535 @default.
- W4386688800 cites W2106537754 @default.
- W4386688800 cites W2116496917 @default.
- W4386688800 cites W2119374514 @default.
- W4386688800 cites W2121370637 @default.
- W4386688800 cites W2124228948 @default.
- W4386688800 cites W2133992176 @default.
- W4386688800 cites W2150362828 @default.
- W4386688800 cites W2160170318 @default.
- W4386688800 cites W2190660810 @default.
- W4386688800 cites W2196229557 @default.
- W4386688800 cites W2250539671 @default.
- W4386688800 cites W2460507874 @default.
- W4386688800 cites W2591383930 @default.
- W4386688800 cites W2619692084 @default.
- W4386688800 cites W2622006327 @default.
- W4386688800 cites W2623153189 @default.
- W4386688800 cites W2793293169 @default.
- W4386688800 cites W2795034731 @default.
- W4386688800 cites W2798471538 @default.
- W4386688800 cites W2802324732 @default.
- W4386688800 cites W2884367402 @default.
- W4386688800 cites W2886958405 @default.
- W4386688800 cites W2945092812 @default.
- W4386688800 cites W2980144955 @default.
- W4386688800 cites W2996046234 @default.
- W4386688800 cites W3000658375 @default.
- W4386688800 cites W3013337670 @default.
- W4386688800 cites W3016968615 @default.
- W4386688800 cites W3026404090 @default.
- W4386688800 cites W3080854802 @default.
- W4386688800 cites W3083252340 @default.
- W4386688800 cites W3092469100 @default.
- W4386688800 cites W3107163047 @default.
- W4386688800 cites W3124424570 @default.
- W4386688800 cites W3129501103 @default.
- W4386688800 cites W3131872017 @default.
- W4386688800 cites W3132169218 @default.
- W4386688800 cites W3132754197 @default.
- W4386688800 cites W3136148461 @default.
- W4386688800 cites W3139778150 @default.
- W4386688800 cites W3154496996 @default.
- W4386688800 cites W3167555057 @default.
- W4386688800 cites W4247194093 @default.
- W4386688800 cites W4250490153 @default.
- W4386688800 doi "https://doi.org/10.1177/13567667231180994" @default.
- W4386688800 hasPublicationYear "2023" @default.
- W4386688800 type Work @default.
- W4386688800 citedByCount "1" @default.
- W4386688800 crossrefType "journal-article" @default.
- W4386688800 hasAuthorship W4386688800A5049333039 @default.
- W4386688800 hasAuthorship W4386688800A5083680610 @default.
- W4386688800 hasConcept C112698675 @default.
- W4386688800 hasConcept C136764020 @default.
- W4386688800 hasConcept C144133560 @default.
- W4386688800 hasConcept C15744967 @default.
- W4386688800 hasConcept C162853370 @default.
- W4386688800 hasConcept C166957645 @default.
- W4386688800 hasConcept C18918823 @default.
- W4386688800 hasConcept C205649164 @default.
- W4386688800 hasConcept C2522767166 @default.
- W4386688800 hasConcept C2776687071 @default.
- W4386688800 hasConcept C2779910172 @default.
- W4386688800 hasConcept C2780586970 @default.
- W4386688800 hasConcept C41008148 @default.
- W4386688800 hasConcept C518677369 @default.
- W4386688800 hasConcept C71901391 @default.
- W4386688800 hasConcept C77805123 @default.
- W4386688800 hasConceptScore W4386688800C112698675 @default.
- W4386688800 hasConceptScore W4386688800C136764020 @default.
- W4386688800 hasConceptScore W4386688800C144133560 @default.
- W4386688800 hasConceptScore W4386688800C15744967 @default.
- W4386688800 hasConceptScore W4386688800C162853370 @default.
- W4386688800 hasConceptScore W4386688800C166957645 @default.
- W4386688800 hasConceptScore W4386688800C18918823 @default.
- W4386688800 hasConceptScore W4386688800C205649164 @default.
- W4386688800 hasConceptScore W4386688800C2522767166 @default.
- W4386688800 hasConceptScore W4386688800C2776687071 @default.