Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386696986> ?p ?o ?g. }
- W4386696986 endingPage "100138" @default.
- W4386696986 startingPage "100138" @default.
- W4386696986 abstract "As a carbon capture and utilization (CCU) technology, gas diffusion electrode (GDE) based electrochemical CO2 reduction reaction (eCO2RR) can convert CO2 to valuable products, such as formate and CO. However, the electrode parameters and operational conditions need to be studied and optimised to enhance the performance and reduce the net cost of the eCO2RR process before its industrial application. In this work, a machine learning algorithm, i.e., extended adaptive hybrid functions (E-AHF) is combined with a multi-physics model for the data-driven three-objective optimisation and techno-economic analysis of the GDE-based eCO2RR process. The effects of eight design variables on the product yield (PY), CO2 conversion (CR) and specific electrical energy consumption (SEEC) of the process are analysed. The results show that the R2 of the E-AHF model for the prediction of PY, CR and SEEC are all higher than 0.96, indicating the high accuracy of the developed machine learning algorithm for the prediction of the eCO2RR process. The process performance experiences a notable improvement after optimisation and is affected by a combination of eight variables, among which the electrolyte concentration having the most significant impact on PY and CR. The optimal trade-off single-pass PY, CR and SEEC are 3.25×10−9 kg s−1, 0.663% and 9.95 kWh kg−1 based on flow channels with 1 cm in length, respectively. The SEEC is reduced by nearly half and PY and CR are improved more than two times after optimisation. The production cost of the GDE-based eCO2RR process was approximately $378 t−1product (CO and formate), much lower than that of traditional CO2 utilisation factories ($835 t−1product). The electricity cost accounted for more than 80% of the total cost, amounting to $318 t−1, indicating that cheaper and cleaner electricity sources would further reduce the production cost of the process, which is the key to the economics of this technology." @default.
- W4386696986 created "2023-09-14" @default.
- W4386696986 creator A5001271781 @default.
- W4386696986 creator A5024329893 @default.
- W4386696986 creator A5027597569 @default.
- W4386696986 creator A5041067396 @default.
- W4386696986 creator A5054528305 @default.
- W4386696986 creator A5055178835 @default.
- W4386696986 creator A5083349849 @default.
- W4386696986 creator A5084662844 @default.
- W4386696986 date "2023-12-01" @default.
- W4386696986 modified "2023-10-14" @default.
- W4386696986 title "Combining machine learning with multi-physics modeling for multi-objective optimisation and techno-economic analysis of electrochemical CO2 reduction process" @default.
- W4386696986 cites W1931367894 @default.
- W4386696986 cites W1980581406 @default.
- W4386696986 cites W1988413957 @default.
- W4386696986 cites W1988562995 @default.
- W4386696986 cites W2003972483 @default.
- W4386696986 cites W2010800895 @default.
- W4386696986 cites W2029877130 @default.
- W4386696986 cites W2031565457 @default.
- W4386696986 cites W2032862695 @default.
- W4386696986 cites W2041511900 @default.
- W4386696986 cites W2042204086 @default.
- W4386696986 cites W2051815674 @default.
- W4386696986 cites W2072433698 @default.
- W4386696986 cites W2072616359 @default.
- W4386696986 cites W2076215686 @default.
- W4386696986 cites W2120891048 @default.
- W4386696986 cites W2126105956 @default.
- W4386696986 cites W2135500272 @default.
- W4386696986 cites W2137376930 @default.
- W4386696986 cites W2323309348 @default.
- W4386696986 cites W2472397834 @default.
- W4386696986 cites W2509071096 @default.
- W4386696986 cites W2743299957 @default.
- W4386696986 cites W2766255121 @default.
- W4386696986 cites W2796624193 @default.
- W4386696986 cites W2799699345 @default.
- W4386696986 cites W2805762569 @default.
- W4386696986 cites W2908654577 @default.
- W4386696986 cites W2915474012 @default.
- W4386696986 cites W2941803205 @default.
- W4386696986 cites W2944363160 @default.
- W4386696986 cites W2957781182 @default.
- W4386696986 cites W2969819714 @default.
- W4386696986 cites W2975335919 @default.
- W4386696986 cites W2987814631 @default.
- W4386696986 cites W3005205992 @default.
- W4386696986 cites W3015483136 @default.
- W4386696986 cites W3081544110 @default.
- W4386696986 cites W3089724662 @default.
- W4386696986 cites W3106880887 @default.
- W4386696986 cites W3113776703 @default.
- W4386696986 cites W3187551716 @default.
- W4386696986 cites W4238161386 @default.
- W4386696986 cites W4254034029 @default.
- W4386696986 cites W4307458176 @default.
- W4386696986 cites W4309409158 @default.
- W4386696986 cites W4311777548 @default.
- W4386696986 cites W4317702612 @default.
- W4386696986 cites W4361865009 @default.
- W4386696986 cites W4362673615 @default.
- W4386696986 doi "https://doi.org/10.1016/j.ccst.2023.100138" @default.
- W4386696986 hasPublicationYear "2023" @default.
- W4386696986 type Work @default.
- W4386696986 citedByCount "0" @default.
- W4386696986 crossrefType "journal-article" @default.
- W4386696986 hasAuthorship W4386696986A5001271781 @default.
- W4386696986 hasAuthorship W4386696986A5024329893 @default.
- W4386696986 hasAuthorship W4386696986A5027597569 @default.
- W4386696986 hasAuthorship W4386696986A5041067396 @default.
- W4386696986 hasAuthorship W4386696986A5054528305 @default.
- W4386696986 hasAuthorship W4386696986A5055178835 @default.
- W4386696986 hasAuthorship W4386696986A5083349849 @default.
- W4386696986 hasAuthorship W4386696986A5084662844 @default.
- W4386696986 hasBestOaLocation W43866969861 @default.
- W4386696986 hasConcept C111335779 @default.
- W4386696986 hasConcept C111919701 @default.
- W4386696986 hasConcept C11413529 @default.
- W4386696986 hasConcept C119857082 @default.
- W4386696986 hasConcept C127413603 @default.
- W4386696986 hasConcept C134121241 @default.
- W4386696986 hasConcept C139719470 @default.
- W4386696986 hasConcept C147789679 @default.
- W4386696986 hasConcept C162324750 @default.
- W4386696986 hasConcept C17525397 @default.
- W4386696986 hasConcept C185592680 @default.
- W4386696986 hasConcept C18762648 @default.
- W4386696986 hasConcept C191897082 @default.
- W4386696986 hasConcept C192562407 @default.
- W4386696986 hasConcept C21880701 @default.
- W4386696986 hasConcept C2524010 @default.
- W4386696986 hasConcept C2778348673 @default.
- W4386696986 hasConcept C33923547 @default.
- W4386696986 hasConcept C41008148 @default.
- W4386696986 hasConcept C52859227 @default.
- W4386696986 hasConcept C68801617 @default.