Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386697162> ?p ?o ?g. }
- W4386697162 endingPage "121306" @default.
- W4386697162 startingPage "121306" @default.
- W4386697162 abstract "Compared with the traditional vibration displacement measurement methods, visual vibration measurement offers several advantages such as long-distance capability, non-contact operation and easy installation. However, the phenomenon of low fitting accuracy of the bounding box often occurs when detecting rotating objects, resulting in a slight deviation in the relative offset of the center vibration point of the target between frames, which will cause a serious deviation in the regression of vibration displacement offset. In this paper, a high-speed industrial camera is employed as the image acquisition medium, and a deep learning-based semantic segmentation method is introduced to address visual vibration measurement challenges in rotating body. Specifically, the CSP module integrates different depth semantic information which is introduced into the Mobiledets backbone network in a targeted manner. This is not only strengthens the performance of the network for segmenting vibration objects, but also dramatically improves the practical performance of the algorithm. The conventional Relu activation function is substituted with Mish activation function, making the network more adept at segmenting rotating body in challenging backgrounds with varying illumination, blur, and similarity. The CSP+Mobiledets backbone network constructed in this study outperforms the U-Net network in terms of feature extraction effectiveness. Adding Dice-loss to the original loss function can more effectively solve the severe imbalance problem of samples caused by long-distance image acquisition. We take the most representative rotating body-rotor as the experimental subject. The displacement curve obtained by the existing algorithm has the best degree of fit with the signal curve collected by the eddy sensor. The results of different segmentation algorithms and detection algorithms on time domain curve plot, frequency domain plot and axis orbit plot are collectively compared. Furthermore, the results also provide valuable guidance for visual measurement of the vibration displacement of the rotating body in specific industrial scenarios." @default.
- W4386697162 created "2023-09-14" @default.
- W4386697162 creator A5006713852 @default.
- W4386697162 creator A5007644154 @default.
- W4386697162 creator A5013297039 @default.
- W4386697162 creator A5051431915 @default.
- W4386697162 creator A5056147003 @default.
- W4386697162 creator A5063341389 @default.
- W4386697162 date "2024-03-01" @default.
- W4386697162 modified "2023-09-27" @default.
- W4386697162 title "A visual measurement algorithm for vibration displacement of rotating body using semantic segmentation network" @default.
- W4386697162 cites W1578285471 @default.
- W4386697162 cites W1637731468 @default.
- W4386697162 cites W1903029394 @default.
- W4386697162 cites W2000215628 @default.
- W4386697162 cites W2081910282 @default.
- W4386697162 cites W2151103935 @default.
- W4386697162 cites W2165406874 @default.
- W4386697162 cites W2194775991 @default.
- W4386697162 cites W2261304198 @default.
- W4386697162 cites W2289414106 @default.
- W4386697162 cites W2338966209 @default.
- W4386697162 cites W2560023338 @default.
- W4386697162 cites W2560132615 @default.
- W4386697162 cites W2560474170 @default.
- W4386697162 cites W2598921379 @default.
- W4386697162 cites W2622432385 @default.
- W4386697162 cites W2626576249 @default.
- W4386697162 cites W2759332716 @default.
- W4386697162 cites W2772607477 @default.
- W4386697162 cites W2916798096 @default.
- W4386697162 cites W2963918968 @default.
- W4386697162 cites W2964309882 @default.
- W4386697162 cites W2982083293 @default.
- W4386697162 cites W2989604896 @default.
- W4386697162 cites W3034971973 @default.
- W4386697162 cites W3042011474 @default.
- W4386697162 cites W3091810278 @default.
- W4386697162 cites W3120745309 @default.
- W4386697162 cites W3168643403 @default.
- W4386697162 cites W3178734692 @default.
- W4386697162 cites W3186163945 @default.
- W4386697162 cites W3199345989 @default.
- W4386697162 cites W3213251302 @default.
- W4386697162 cites W4200592958 @default.
- W4386697162 cites W4224992193 @default.
- W4386697162 doi "https://doi.org/10.1016/j.eswa.2023.121306" @default.
- W4386697162 hasPublicationYear "2024" @default.
- W4386697162 type Work @default.
- W4386697162 citedByCount "0" @default.
- W4386697162 crossrefType "journal-article" @default.
- W4386697162 hasAuthorship W4386697162A5006713852 @default.
- W4386697162 hasAuthorship W4386697162A5007644154 @default.
- W4386697162 hasAuthorship W4386697162A5013297039 @default.
- W4386697162 hasAuthorship W4386697162A5051431915 @default.
- W4386697162 hasAuthorship W4386697162A5056147003 @default.
- W4386697162 hasAuthorship W4386697162A5063341389 @default.
- W4386697162 hasConcept C107551265 @default.
- W4386697162 hasConcept C11413529 @default.
- W4386697162 hasConcept C121332964 @default.
- W4386697162 hasConcept C154945302 @default.
- W4386697162 hasConcept C15744967 @default.
- W4386697162 hasConcept C175291020 @default.
- W4386697162 hasConcept C198394728 @default.
- W4386697162 hasConcept C199360897 @default.
- W4386697162 hasConcept C24890656 @default.
- W4386697162 hasConcept C31972630 @default.
- W4386697162 hasConcept C41008148 @default.
- W4386697162 hasConcept C542102704 @default.
- W4386697162 hasConcept C89600930 @default.
- W4386697162 hasConceptScore W4386697162C107551265 @default.
- W4386697162 hasConceptScore W4386697162C11413529 @default.
- W4386697162 hasConceptScore W4386697162C121332964 @default.
- W4386697162 hasConceptScore W4386697162C154945302 @default.
- W4386697162 hasConceptScore W4386697162C15744967 @default.
- W4386697162 hasConceptScore W4386697162C175291020 @default.
- W4386697162 hasConceptScore W4386697162C198394728 @default.
- W4386697162 hasConceptScore W4386697162C199360897 @default.
- W4386697162 hasConceptScore W4386697162C24890656 @default.
- W4386697162 hasConceptScore W4386697162C31972630 @default.
- W4386697162 hasConceptScore W4386697162C41008148 @default.
- W4386697162 hasConceptScore W4386697162C542102704 @default.
- W4386697162 hasConceptScore W4386697162C89600930 @default.
- W4386697162 hasFunder F4320321001 @default.
- W4386697162 hasFunder F4320336602 @default.
- W4386697162 hasLocation W43866971621 @default.
- W4386697162 hasOpenAccess W4386697162 @default.
- W4386697162 hasPrimaryLocation W43866971621 @default.
- W4386697162 hasRelatedWork W1669643531 @default.
- W4386697162 hasRelatedWork W1982826852 @default.
- W4386697162 hasRelatedWork W2005437358 @default.
- W4386697162 hasRelatedWork W2008656436 @default.
- W4386697162 hasRelatedWork W2023558673 @default.
- W4386697162 hasRelatedWork W2110230079 @default.
- W4386697162 hasRelatedWork W2134924024 @default.
- W4386697162 hasRelatedWork W2517104666 @default.
- W4386697162 hasRelatedWork W2613186388 @default.
- W4386697162 hasRelatedWork W1967061043 @default.