Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386697768> ?p ?o ?g. }
- W4386697768 abstract "Abstract RNA-seq studies to infer differential gene expression (DGE) in disease or other conditions often use bulk sequencing of mixed cell populations because single cell or sorted cell sequencing may be prohibitively expensive. However, differential gene expression may be restricted to specific cell populations, meaning that mixed cell studies may lose power. Computational deconvolution can be used to estimate cell fractions from bulk expression data and may also infer average cell-type expression in a set of samples (eg cases or controls), but imputing sample-level cell-type expression is less commonly addressed. In this study, we first assessed the accuracy of cell fractions estimated by three domain-specific methods-CIBERSORTx, bMIND and debCAM/swCAM using a real dataset where mixed peripheral blood mononuclear cells (PBMC) and sorted (CD4, CD8, CD14, CD19) RNA sequencing data as well as flow cytometry data were generated from the same subjects (N=158). Furthermore, we investigated the potential of cross-domain machine learning methods, multiple response LASSO and RIDGE, for imputing sample-level cell-type expression and compared their performance to the three deconvolution methods aforementioned. Estimates of cell fractions by deconvolution methods for CD8, CD14 and CD19 had modest/high correlations r (0.62-0.77) with those from flow data but were less accurate for CD4 (0.43-0.54). All methods appeared to impute sample-level cell-type gene expression well across cell types (median r > 0.85); however, there was a high variation of correlations across subjects per gene. Nevertheless, LASSO/RIDGE exhibited marginally better accuracy than the deconvolution approaches. We considered an alternative measure of accuracy, differential gene expression (DGE) recovery, based on simulating case/control status and comparing detection of DGE between imputed and observed cell type data. We observed higher sensitivity but lower specificity of DGE recovery in LASSO than in deconvolution methods, although overall receiver operating characteristic (ROC) analysis revealed that LASSO/RIDGE had higher area under curves (AUC, median=0.84-0.87 across cell types) than CIBERSORTx (0.62-0.77), bMIND (0.69-0.76) and swCAM (0.64-0.72). We conclude that machine learning methods have the potential to outperform domain-specific methods when suitable training data are available and suggest that further research in this area may optimise machine learning approaches to this problem." @default.
- W4386697768 created "2023-09-14" @default.
- W4386697768 creator A5006577577 @default.
- W4386697768 creator A5020715360 @default.
- W4386697768 creator A5022225922 @default.
- W4386697768 creator A5037338479 @default.
- W4386697768 creator A5059250854 @default.
- W4386697768 date "2023-09-13" @default.
- W4386697768 modified "2023-10-14" @default.
- W4386697768 title "Imputation of cell-type specific expression using RNA-seq data from mixed cell populations" @default.
- W4386697768 cites W1985987855 @default.
- W4386697768 cites W2006617902 @default.
- W4386697768 cites W2015008025 @default.
- W4386697768 cites W2092644774 @default.
- W4386697768 cites W2103056503 @default.
- W4386697768 cites W2114104545 @default.
- W4386697768 cites W2122825543 @default.
- W4386697768 cites W2138207763 @default.
- W4386697768 cites W2146512944 @default.
- W4386697768 cites W2155388222 @default.
- W4386697768 cites W2168197335 @default.
- W4386697768 cites W2169456326 @default.
- W4386697768 cites W2507880739 @default.
- W4386697768 cites W2529694725 @default.
- W4386697768 cites W2600132724 @default.
- W4386697768 cites W2605897695 @default.
- W4386697768 cites W2788142646 @default.
- W4386697768 cites W2788357641 @default.
- W4386697768 cites W2789878273 @default.
- W4386697768 cites W2942610007 @default.
- W4386697768 cites W2947554843 @default.
- W4386697768 cites W2950779253 @default.
- W4386697768 cites W2953365463 @default.
- W4386697768 cites W2953757801 @default.
- W4386697768 cites W2967063345 @default.
- W4386697768 cites W2993244493 @default.
- W4386697768 cites W3001363353 @default.
- W4386697768 cites W3010579505 @default.
- W4386697768 cites W3013579737 @default.
- W4386697768 cites W3088521497 @default.
- W4386697768 cites W3107828244 @default.
- W4386697768 cites W3145087249 @default.
- W4386697768 cites W3155679615 @default.
- W4386697768 cites W3164414718 @default.
- W4386697768 cites W3175529520 @default.
- W4386697768 cites W4205894915 @default.
- W4386697768 cites W4241872665 @default.
- W4386697768 doi "https://doi.org/10.1101/2023.09.11.556650" @default.
- W4386697768 hasPublicationYear "2023" @default.
- W4386697768 type Work @default.
- W4386697768 citedByCount "0" @default.
- W4386697768 crossrefType "posted-content" @default.
- W4386697768 hasAuthorship W4386697768A5006577577 @default.
- W4386697768 hasAuthorship W4386697768A5020715360 @default.
- W4386697768 hasAuthorship W4386697768A5022225922 @default.
- W4386697768 hasAuthorship W4386697768A5037338479 @default.
- W4386697768 hasAuthorship W4386697768A5059250854 @default.
- W4386697768 hasBestOaLocation W43866977681 @default.
- W4386697768 hasConcept C104317684 @default.
- W4386697768 hasConcept C105795698 @default.
- W4386697768 hasConcept C11413529 @default.
- W4386697768 hasConcept C1491633281 @default.
- W4386697768 hasConcept C150194340 @default.
- W4386697768 hasConcept C174576160 @default.
- W4386697768 hasConcept C189014844 @default.
- W4386697768 hasConcept C33923547 @default.
- W4386697768 hasConcept C41008148 @default.
- W4386697768 hasConcept C54355233 @default.
- W4386697768 hasConcept C58041806 @default.
- W4386697768 hasConcept C70721500 @default.
- W4386697768 hasConcept C86803240 @default.
- W4386697768 hasConcept C9357733 @default.
- W4386697768 hasConceptScore W4386697768C104317684 @default.
- W4386697768 hasConceptScore W4386697768C105795698 @default.
- W4386697768 hasConceptScore W4386697768C11413529 @default.
- W4386697768 hasConceptScore W4386697768C1491633281 @default.
- W4386697768 hasConceptScore W4386697768C150194340 @default.
- W4386697768 hasConceptScore W4386697768C174576160 @default.
- W4386697768 hasConceptScore W4386697768C189014844 @default.
- W4386697768 hasConceptScore W4386697768C33923547 @default.
- W4386697768 hasConceptScore W4386697768C41008148 @default.
- W4386697768 hasConceptScore W4386697768C54355233 @default.
- W4386697768 hasConceptScore W4386697768C58041806 @default.
- W4386697768 hasConceptScore W4386697768C70721500 @default.
- W4386697768 hasConceptScore W4386697768C86803240 @default.
- W4386697768 hasConceptScore W4386697768C9357733 @default.
- W4386697768 hasLocation W43866977681 @default.
- W4386697768 hasOpenAccess W4386697768 @default.
- W4386697768 hasPrimaryLocation W43866977681 @default.
- W4386697768 hasRelatedWork W1571589662 @default.
- W4386697768 hasRelatedWork W1975240727 @default.
- W4386697768 hasRelatedWork W2009966535 @default.
- W4386697768 hasRelatedWork W2090384073 @default.
- W4386697768 hasRelatedWork W2146007026 @default.
- W4386697768 hasRelatedWork W2157389940 @default.
- W4386697768 hasRelatedWork W2513916811 @default.
- W4386697768 hasRelatedWork W4242022357 @default.
- W4386697768 hasRelatedWork W4296703446 @default.
- W4386697768 hasRelatedWork W4308625184 @default.
- W4386697768 isParatext "false" @default.