Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386697801> ?p ?o ?g. }
- W4386697801 endingPage "205002" @default.
- W4386697801 startingPage "205002" @default.
- W4386697801 abstract "Objective.Addition of a denoising filter step in ultrasound localization microscopy (ULM) has been shown to effectively reduce the error localizations of microbubbles (MBs) and achieve resolution improvement for super-resolution ultrasound (SR-US) imaging. However, previous image-denoising methods (e.g. block-matching 3D, BM3D) requires long data processing times, making ULM only able to be processed offline. This work introduces a new way to reduce data processing time through deep learning.Approach.In this study, we propose deep learning (DL) denoising based on contrastive semi-supervised network (CS-Net). The neural network is mainly trained with simulated MBs data to extract MB signals from noise. And the performances of CS-Net denoising are evaluated in bothin vitroflow phantom experiment andin vivoexperiment of New Zealand rabbit tumor.Main results.Forin vitroflow phantom experiment, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of single microbubble image are 26.91 dB and 4.01 dB, repectively. Forin vivoanimal experiment , the SNR and CNR were 12.29 dB and 6.06 dB. In addition, single microvessel of 24μm and two microvessels separated by 46μm could be clearly displayed. Most importantly,, the CS-Net denoising speeds forin vitroandin vivoexperiments were 0.041 s frame-1and 0.062 s frame-1, respectively.Significance.DL denoising based on CS-Net can improve the resolution of SR-US as well as reducing denoising time, thereby making further contributions to the clinical real-time imaging of ULM." @default.
- W4386697801 created "2023-09-14" @default.
- W4386697801 creator A5015547020 @default.
- W4386697801 creator A5018273460 @default.
- W4386697801 creator A5030009218 @default.
- W4386697801 creator A5030167459 @default.
- W4386697801 creator A5036879993 @default.
- W4386697801 creator A5053144476 @default.
- W4386697801 creator A5059985080 @default.
- W4386697801 creator A5066247794 @default.
- W4386697801 creator A5085092010 @default.
- W4386697801 date "2023-10-02" @default.
- W4386697801 modified "2023-10-18" @default.
- W4386697801 title "Deep learning for fast denoising filtering in ultrasound localization microscopy" @default.
- W4386697801 cites W1573363574 @default.
- W4386697801 cites W1964916631 @default.
- W4386697801 cites W1973042235 @default.
- W4386697801 cites W1992858116 @default.
- W4386697801 cites W2010807412 @default.
- W4386697801 cites W2070276211 @default.
- W4386697801 cites W2101336703 @default.
- W4386697801 cites W2157665562 @default.
- W4386697801 cites W2173940267 @default.
- W4386697801 cites W2174473997 @default.
- W4386697801 cites W2222512263 @default.
- W4386697801 cites W2243189799 @default.
- W4386697801 cites W2548854137 @default.
- W4386697801 cites W2561051256 @default.
- W4386697801 cites W2745372164 @default.
- W4386697801 cites W2772101345 @default.
- W4386697801 cites W2793842820 @default.
- W4386697801 cites W2797822720 @default.
- W4386697801 cites W2801396275 @default.
- W4386697801 cites W2888068144 @default.
- W4386697801 cites W2911377888 @default.
- W4386697801 cites W2936120730 @default.
- W4386697801 cites W2938475891 @default.
- W4386697801 cites W3015438922 @default.
- W4386697801 cites W3016398700 @default.
- W4386697801 cites W3035524453 @default.
- W4386697801 cites W3127471220 @default.
- W4386697801 cites W3134142926 @default.
- W4386697801 cites W3208432869 @default.
- W4386697801 cites W4226137632 @default.
- W4386697801 cites W4226333728 @default.
- W4386697801 cites W4238138186 @default.
- W4386697801 cites W4297094919 @default.
- W4386697801 cites W4382119248 @default.
- W4386697801 doi "https://doi.org/10.1088/1361-6560/acf98f" @default.
- W4386697801 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37703894" @default.
- W4386697801 hasPublicationYear "2023" @default.
- W4386697801 type Work @default.
- W4386697801 citedByCount "0" @default.
- W4386697801 crossrefType "journal-article" @default.
- W4386697801 hasAuthorship W4386697801A5015547020 @default.
- W4386697801 hasAuthorship W4386697801A5018273460 @default.
- W4386697801 hasAuthorship W4386697801A5030009218 @default.
- W4386697801 hasAuthorship W4386697801A5030167459 @default.
- W4386697801 hasAuthorship W4386697801A5036879993 @default.
- W4386697801 hasAuthorship W4386697801A5053144476 @default.
- W4386697801 hasAuthorship W4386697801A5059985080 @default.
- W4386697801 hasAuthorship W4386697801A5066247794 @default.
- W4386697801 hasAuthorship W4386697801A5085092010 @default.
- W4386697801 hasConcept C104293457 @default.
- W4386697801 hasConcept C106131492 @default.
- W4386697801 hasConcept C108583219 @default.
- W4386697801 hasConcept C115961682 @default.
- W4386697801 hasConcept C120665830 @default.
- W4386697801 hasConcept C121332964 @default.
- W4386697801 hasConcept C13944312 @default.
- W4386697801 hasConcept C154945302 @default.
- W4386697801 hasConcept C163294075 @default.
- W4386697801 hasConcept C31972630 @default.
- W4386697801 hasConcept C41008148 @default.
- W4386697801 hasConcept C76155785 @default.
- W4386697801 hasConcept C99498987 @default.
- W4386697801 hasConceptScore W4386697801C104293457 @default.
- W4386697801 hasConceptScore W4386697801C106131492 @default.
- W4386697801 hasConceptScore W4386697801C108583219 @default.
- W4386697801 hasConceptScore W4386697801C115961682 @default.
- W4386697801 hasConceptScore W4386697801C120665830 @default.
- W4386697801 hasConceptScore W4386697801C121332964 @default.
- W4386697801 hasConceptScore W4386697801C13944312 @default.
- W4386697801 hasConceptScore W4386697801C154945302 @default.
- W4386697801 hasConceptScore W4386697801C163294075 @default.
- W4386697801 hasConceptScore W4386697801C31972630 @default.
- W4386697801 hasConceptScore W4386697801C41008148 @default.
- W4386697801 hasConceptScore W4386697801C76155785 @default.
- W4386697801 hasConceptScore W4386697801C99498987 @default.
- W4386697801 hasFunder F4320321001 @default.
- W4386697801 hasFunder F4320322186 @default.
- W4386697801 hasIssue "20" @default.
- W4386697801 hasLocation W43866978011 @default.
- W4386697801 hasLocation W43866978012 @default.
- W4386697801 hasOpenAccess W4386697801 @default.
- W4386697801 hasPrimaryLocation W43866978011 @default.
- W4386697801 hasRelatedWork W1016416119 @default.
- W4386697801 hasRelatedWork W195658138 @default.