Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386699013> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4386699013 endingPage "190" @default.
- W4386699013 startingPage "181" @default.
- W4386699013 abstract "Electroencephalography (EEG) is a widely used neuroimaging technique that records the electrical activity of the brain. EEG analysis provides valuable insights into brain dynamics and understanding of neural processes. As EEG data analysis relies heavily on signal processing and statistical analysis, it is crucial to have a robust framework for analyzing EEG data that produces reliable results. One very useful framework for EEG data analysis is the use of algorithmic complexity measures. Algorithmic complexity is a measure of the complexity of a given sequence of data such as the EEG waveform. It provides a way to quantify the amount of randomness and predictability within EEG data. Along with traditional complexity measures like Sample Entropy, Hurst Exponent, Multiscale Entropy, etc., there is a less-known approach involving Kolmogorov-Chaitin algorithmic complexity, which is a mathematical approach used for measuring the complexity of a string of information. It is based on the idea that a complex string of information cannot be compressed or represented by a simpler algorithm. The advantages of using Kolmogorov-Chaitin complexity include its objectivity, non-linearity, ability to capture content and robustness. This paper presents the basics of the later approach and shows how it can be used for machine learning on EEG data." @default.
- W4386699013 created "2023-09-14" @default.
- W4386699013 creator A5085643514 @default.
- W4386699013 date "2023-09-14" @default.
- W4386699013 modified "2023-10-18" @default.
- W4386699013 title "A Less Common Algorithmic Complexity Approach to EEG Signal Processing for Machine Learning" @default.
- W4386699013 cites W1562563704 @default.
- W4386699013 cites W1999771120 @default.
- W4386699013 cites W2002006523 @default.
- W4386699013 cites W2116300733 @default.
- W4386699013 cites W2947459187 @default.
- W4386699013 cites W2963123289 @default.
- W4386699013 cites W2963916141 @default.
- W4386699013 cites W3005558727 @default.
- W4386699013 cites W3015219844 @default.
- W4386699013 cites W3036417667 @default.
- W4386699013 cites W4312177524 @default.
- W4386699013 doi "https://doi.org/10.1007/978-3-031-42782-4_20" @default.
- W4386699013 hasPublicationYear "2023" @default.
- W4386699013 type Work @default.
- W4386699013 citedByCount "0" @default.
- W4386699013 crossrefType "book-chapter" @default.
- W4386699013 hasAuthorship W4386699013A5085643514 @default.
- W4386699013 hasConcept C104317684 @default.
- W4386699013 hasConcept C105795698 @default.
- W4386699013 hasConcept C106301342 @default.
- W4386699013 hasConcept C11413529 @default.
- W4386699013 hasConcept C118552586 @default.
- W4386699013 hasConcept C119857082 @default.
- W4386699013 hasConcept C121332964 @default.
- W4386699013 hasConcept C125112378 @default.
- W4386699013 hasConcept C153180895 @default.
- W4386699013 hasConcept C154945302 @default.
- W4386699013 hasConcept C15744967 @default.
- W4386699013 hasConcept C179799912 @default.
- W4386699013 hasConcept C185592680 @default.
- W4386699013 hasConcept C197640229 @default.
- W4386699013 hasConcept C2779341405 @default.
- W4386699013 hasConcept C33923547 @default.
- W4386699013 hasConcept C41008148 @default.
- W4386699013 hasConcept C522805319 @default.
- W4386699013 hasConcept C55493867 @default.
- W4386699013 hasConcept C62520636 @default.
- W4386699013 hasConcept C63479239 @default.
- W4386699013 hasConceptScore W4386699013C104317684 @default.
- W4386699013 hasConceptScore W4386699013C105795698 @default.
- W4386699013 hasConceptScore W4386699013C106301342 @default.
- W4386699013 hasConceptScore W4386699013C11413529 @default.
- W4386699013 hasConceptScore W4386699013C118552586 @default.
- W4386699013 hasConceptScore W4386699013C119857082 @default.
- W4386699013 hasConceptScore W4386699013C121332964 @default.
- W4386699013 hasConceptScore W4386699013C125112378 @default.
- W4386699013 hasConceptScore W4386699013C153180895 @default.
- W4386699013 hasConceptScore W4386699013C154945302 @default.
- W4386699013 hasConceptScore W4386699013C15744967 @default.
- W4386699013 hasConceptScore W4386699013C179799912 @default.
- W4386699013 hasConceptScore W4386699013C185592680 @default.
- W4386699013 hasConceptScore W4386699013C197640229 @default.
- W4386699013 hasConceptScore W4386699013C2779341405 @default.
- W4386699013 hasConceptScore W4386699013C33923547 @default.
- W4386699013 hasConceptScore W4386699013C41008148 @default.
- W4386699013 hasConceptScore W4386699013C522805319 @default.
- W4386699013 hasConceptScore W4386699013C55493867 @default.
- W4386699013 hasConceptScore W4386699013C62520636 @default.
- W4386699013 hasConceptScore W4386699013C63479239 @default.
- W4386699013 hasLocation W43866990131 @default.
- W4386699013 hasOpenAccess W4386699013 @default.
- W4386699013 hasPrimaryLocation W43866990131 @default.
- W4386699013 hasRelatedWork W1988585593 @default.
- W4386699013 hasRelatedWork W2037301749 @default.
- W4386699013 hasRelatedWork W205898265 @default.
- W4386699013 hasRelatedWork W2188900084 @default.
- W4386699013 hasRelatedWork W2891738677 @default.
- W4386699013 hasRelatedWork W2892295980 @default.
- W4386699013 hasRelatedWork W3042951448 @default.
- W4386699013 hasRelatedWork W4318719679 @default.
- W4386699013 hasRelatedWork W4379932992 @default.
- W4386699013 hasRelatedWork W1642948434 @default.
- W4386699013 isParatext "false" @default.
- W4386699013 isRetracted "false" @default.
- W4386699013 workType "book-chapter" @default.