Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386700716> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4386700716 endingPage "S134" @default.
- W4386700716 startingPage "S133" @default.
- W4386700716 abstract "Walking gait is an important function of people that many internal and external factors effect on gait parameters. Furthermore, cardiovascular diseases are one of the main threats to human life and account for about one third of deaths worldwide. The lack of study in evaluation relationship between cardiovascular factors and gait exist. In addition, the ECG signal is an important basis for the diagnosis of cardiovascular diseases. Therefore, removing ECG signal noise has become big challenge in medical and engineering fields [1]. Thakur et al. [2] used methods based on adaptive filtering and obtained promising results. In this research, an algorithm to remove the noise of ECG signals during gait movement is proposed, which uses wavelet transform, adaptive soft threshold contraction and modification of Donoho's formula. How can to ECG noise remove using wavelet transform during the gait? The proposed algorithm is tested with ECG signals (MIT-BIH arrhythmia database) with standard Gaussian noise added. The signal noise removal algorithm proposed in this paper is based on the method of Johnston and Donoho [3]. It has been proven that this method has been successfully applied to a wide class of non-stationary signals. Thresholding is used to smooth or remove some precise wavelet coefficients of the original signal. Then the noise-free signal obtained in the time domain is reconstructed using modified coefficients. Determining the threshold is a very important issue, because contraction significantly affects the quality of ECG morphology. Then the denoising problem is formulated to find the optimal wavelet basis functions and the optimal threshold for the noise signal. The main studied ECG signal (with the number of sample points N=1024) is shown in Fig. 1(a) and the ECG noise signal is shown in Fig. 1(b). DWT is applied to the noisy signal at all possible levels of decomposition (scale). After determining the threshold value, the detail coefficients of the wavelet are filtered (with a soft adaptive threshold). The inverse DWT is applied to the approximate coefficients and the resulting details, and the estimate of the removed signal is obtained. The reconstructed ECG signal without noise is shown in Fig. 1(c), the noise extracted from the ECG signal using the traditional adaptive soft algorithm based on wavelet contraction, in Fig. 1(d) and the noise extracted from the ECG signal using the new adaptive algorithm based on threshold The wavelet is shown in Fig. 1(e).Download : Download high-res image (158KB)Download : Download full-size image Fig. 1: The steps of the ECG noise removal using wavelet transform during the gait Discrete wavelet transform allows the successful removal of non-stationary electrocardiographic signals. The obtained results show that the proposed threshold for removing ECG noise is more suitable than the Donoho threshold and can be successfully applied in the processing of ECG signals." @default.
- W4386700716 created "2023-09-14" @default.
- W4386700716 creator A5010390091 @default.
- W4386700716 creator A5020587618 @default.
- W4386700716 creator A5042693490 @default.
- W4386700716 creator A5043389639 @default.
- W4386700716 creator A5069208002 @default.
- W4386700716 creator A5074349667 @default.
- W4386700716 creator A5092860730 @default.
- W4386700716 date "2023-09-01" @default.
- W4386700716 modified "2023-09-27" @default.
- W4386700716 title "ECG noise removal using wavelet transform during the gait" @default.
- W4386700716 doi "https://doi.org/10.1016/j.gaitpost.2023.07.163" @default.
- W4386700716 hasPublicationYear "2023" @default.
- W4386700716 type Work @default.
- W4386700716 citedByCount "0" @default.
- W4386700716 crossrefType "journal-article" @default.
- W4386700716 hasAuthorship W4386700716A5010390091 @default.
- W4386700716 hasAuthorship W4386700716A5020587618 @default.
- W4386700716 hasAuthorship W4386700716A5042693490 @default.
- W4386700716 hasAuthorship W4386700716A5043389639 @default.
- W4386700716 hasAuthorship W4386700716A5069208002 @default.
- W4386700716 hasAuthorship W4386700716A5074349667 @default.
- W4386700716 hasAuthorship W4386700716A5092860730 @default.
- W4386700716 hasConcept C111350171 @default.
- W4386700716 hasConcept C115961682 @default.
- W4386700716 hasConcept C151800584 @default.
- W4386700716 hasConcept C153180895 @default.
- W4386700716 hasConcept C154945302 @default.
- W4386700716 hasConcept C163294075 @default.
- W4386700716 hasConcept C191178318 @default.
- W4386700716 hasConcept C196216189 @default.
- W4386700716 hasConcept C199360897 @default.
- W4386700716 hasConcept C2779843651 @default.
- W4386700716 hasConcept C33923547 @default.
- W4386700716 hasConcept C41008148 @default.
- W4386700716 hasConcept C4199805 @default.
- W4386700716 hasConcept C42407357 @default.
- W4386700716 hasConcept C46286280 @default.
- W4386700716 hasConcept C47432892 @default.
- W4386700716 hasConcept C71924100 @default.
- W4386700716 hasConcept C73339587 @default.
- W4386700716 hasConcept C99498987 @default.
- W4386700716 hasConceptScore W4386700716C111350171 @default.
- W4386700716 hasConceptScore W4386700716C115961682 @default.
- W4386700716 hasConceptScore W4386700716C151800584 @default.
- W4386700716 hasConceptScore W4386700716C153180895 @default.
- W4386700716 hasConceptScore W4386700716C154945302 @default.
- W4386700716 hasConceptScore W4386700716C163294075 @default.
- W4386700716 hasConceptScore W4386700716C191178318 @default.
- W4386700716 hasConceptScore W4386700716C196216189 @default.
- W4386700716 hasConceptScore W4386700716C199360897 @default.
- W4386700716 hasConceptScore W4386700716C2779843651 @default.
- W4386700716 hasConceptScore W4386700716C33923547 @default.
- W4386700716 hasConceptScore W4386700716C41008148 @default.
- W4386700716 hasConceptScore W4386700716C4199805 @default.
- W4386700716 hasConceptScore W4386700716C42407357 @default.
- W4386700716 hasConceptScore W4386700716C46286280 @default.
- W4386700716 hasConceptScore W4386700716C47432892 @default.
- W4386700716 hasConceptScore W4386700716C71924100 @default.
- W4386700716 hasConceptScore W4386700716C73339587 @default.
- W4386700716 hasConceptScore W4386700716C99498987 @default.
- W4386700716 hasLocation W43867007161 @default.
- W4386700716 hasOpenAccess W4386700716 @default.
- W4386700716 hasPrimaryLocation W43867007161 @default.
- W4386700716 hasRelatedWork W1577789985 @default.
- W4386700716 hasRelatedWork W1588899229 @default.
- W4386700716 hasRelatedWork W1918078477 @default.
- W4386700716 hasRelatedWork W2023142747 @default.
- W4386700716 hasRelatedWork W2059234650 @default.
- W4386700716 hasRelatedWork W2085792030 @default.
- W4386700716 hasRelatedWork W2092112455 @default.
- W4386700716 hasRelatedWork W2542554451 @default.
- W4386700716 hasRelatedWork W2792520941 @default.
- W4386700716 hasRelatedWork W2185227953 @default.
- W4386700716 hasVolume "106" @default.
- W4386700716 isParatext "false" @default.
- W4386700716 isRetracted "false" @default.
- W4386700716 workType "article" @default.