Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386701630> ?p ?o ?g. }
- W4386701630 endingPage "121490" @default.
- W4386701630 startingPage "121490" @default.
- W4386701630 abstract "Visceral leishmaniasis or Kala-azar (KA) is a Vector-Borne Disease (VBD) that remains the second-largest parasitic killer across the globe (mortality rate: 75-95%). More than 60% of KA cases originate in South Asia, wherein India accounts for 2/3rd of the cases, and Bihar, a state in India, alone accounts for more than 50% of the Indian cases. Past studies suspected climate change vulnerabilities as a driving cause of KA outbreaks. The VBDs-based epidemic prediction systems have been developed to mitigate recurrent outbreaks; however, Machine Learning (ML) based approaches still need to be explored for modeling changing climate impacts on KA cases. This study thus develops a Radial Basis Function (RBF) kernel-based Support Vector Regression (SVR), hereinafter RBF-kernel-based-SVR model for the most-affected endemic districts of Bihar (northern-India) using the data from 2016 and 2021. Forward selection, backward elimination, and stepwise regression procedures were adopted while selecting influential climatic variables, followed by k-fold cross-validation technique and, then, the RBF-kernel-based-SVR algorithm for classification. Results suggested that temperature, wind speed, rainfall, and population density significantly contributed to the KA outbreaks. This study also developed Multiple Linear Regression (MLR) and Multilayer Perceptron (MLP) models to compare SVR with other classification models. Findings indicated that the proposed RBF-kernel-based-SVR model [Correlation Coefficient (CC) = 0.82, Root-Mean-Square Error (RMSE) = 12.20, and Nash–Sutcliffe Efficiency (NSE) = 0.66] outperformed MLR (0.81, 14.20, 0.48) and MLP (0.81, 12.95, 0.61). Study recommends using the RBF-kernel-based-SVR model as a quick and efficient model capable of detecting KA cases with high predictability even under limited data availability. Such models can assist public health authorities given monitoring KA spread, learning the climate impacts of outbreaks, and ensuring timelier health services." @default.
- W4386701630 created "2023-09-14" @default.
- W4386701630 creator A5020825700 @default.
- W4386701630 creator A5039975087 @default.
- W4386701630 creator A5087752029 @default.
- W4386701630 date "2024-03-01" @default.
- W4386701630 modified "2023-10-16" @default.
- W4386701630 title "Modeling Climate Change Impacts on Vector-borne Disease Using Machine Learning Models: Case Study of Visceral leishmaniasis (Kala-azar) from Indian State of Bihar" @default.
- W4386701630 cites W1502387293 @default.
- W4386701630 cites W1967245504 @default.
- W4386701630 cites W1967484865 @default.
- W4386701630 cites W2015981295 @default.
- W4386701630 cites W2033904036 @default.
- W4386701630 cites W2037931255 @default.
- W4386701630 cites W2039240409 @default.
- W4386701630 cites W2058388441 @default.
- W4386701630 cites W2059393002 @default.
- W4386701630 cites W2087347434 @default.
- W4386701630 cites W2101563611 @default.
- W4386701630 cites W2105977368 @default.
- W4386701630 cites W2126264453 @default.
- W4386701630 cites W2132708564 @default.
- W4386701630 cites W2132995696 @default.
- W4386701630 cites W2408483783 @default.
- W4386701630 cites W2766528696 @default.
- W4386701630 cites W2766585573 @default.
- W4386701630 cites W2801896044 @default.
- W4386701630 cites W2806574476 @default.
- W4386701630 cites W2886375368 @default.
- W4386701630 cites W2943491685 @default.
- W4386701630 cites W2944954104 @default.
- W4386701630 cites W2947753135 @default.
- W4386701630 cites W2949524299 @default.
- W4386701630 cites W2950270294 @default.
- W4386701630 cites W2952382660 @default.
- W4386701630 cites W2952490328 @default.
- W4386701630 cites W2973218737 @default.
- W4386701630 cites W2985626220 @default.
- W4386701630 cites W2996963262 @default.
- W4386701630 cites W2997690738 @default.
- W4386701630 cites W2999516102 @default.
- W4386701630 cites W3007441389 @default.
- W4386701630 cites W3008898666 @default.
- W4386701630 cites W3015305691 @default.
- W4386701630 cites W3016700653 @default.
- W4386701630 cites W3018747149 @default.
- W4386701630 cites W3021995021 @default.
- W4386701630 cites W3030738016 @default.
- W4386701630 cites W3036643198 @default.
- W4386701630 cites W3043072051 @default.
- W4386701630 cites W3043122096 @default.
- W4386701630 cites W3044368265 @default.
- W4386701630 cites W3122809990 @default.
- W4386701630 cites W3125096101 @default.
- W4386701630 cites W3133099395 @default.
- W4386701630 cites W3135028703 @default.
- W4386701630 cites W3173502796 @default.
- W4386701630 cites W3210899060 @default.
- W4386701630 cites W4212944095 @default.
- W4386701630 cites W4224303089 @default.
- W4386701630 cites W4229016253 @default.
- W4386701630 cites W4230674625 @default.
- W4386701630 cites W4250664506 @default.
- W4386701630 cites W4309413380 @default.
- W4386701630 cites W4309787652 @default.
- W4386701630 cites W4311281545 @default.
- W4386701630 cites W4312172068 @default.
- W4386701630 cites W4320493648 @default.
- W4386701630 cites W4327601314 @default.
- W4386701630 cites W4376875927 @default.
- W4386701630 doi "https://doi.org/10.1016/j.eswa.2023.121490" @default.
- W4386701630 hasPublicationYear "2024" @default.
- W4386701630 type Work @default.
- W4386701630 citedByCount "0" @default.
- W4386701630 crossrefType "journal-article" @default.
- W4386701630 hasAuthorship W4386701630A5020825700 @default.
- W4386701630 hasAuthorship W4386701630A5039975087 @default.
- W4386701630 hasAuthorship W4386701630A5087752029 @default.
- W4386701630 hasConcept C105795698 @default.
- W4386701630 hasConcept C114614502 @default.
- W4386701630 hasConcept C119857082 @default.
- W4386701630 hasConcept C12267149 @default.
- W4386701630 hasConcept C139945424 @default.
- W4386701630 hasConcept C154945302 @default.
- W4386701630 hasConcept C170964787 @default.
- W4386701630 hasConcept C179717631 @default.
- W4386701630 hasConcept C33923547 @default.
- W4386701630 hasConcept C41008148 @default.
- W4386701630 hasConcept C50644808 @default.
- W4386701630 hasConcept C60908668 @default.
- W4386701630 hasConcept C74193536 @default.
- W4386701630 hasConceptScore W4386701630C105795698 @default.
- W4386701630 hasConceptScore W4386701630C114614502 @default.
- W4386701630 hasConceptScore W4386701630C119857082 @default.
- W4386701630 hasConceptScore W4386701630C12267149 @default.
- W4386701630 hasConceptScore W4386701630C139945424 @default.
- W4386701630 hasConceptScore W4386701630C154945302 @default.
- W4386701630 hasConceptScore W4386701630C170964787 @default.