Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386702858> ?p ?o ?g. }
- W4386702858 endingPage "14" @default.
- W4386702858 startingPage "1" @default.
- W4386702858 abstract "The current-based fault diagnosis method is a feasible way to replace the conventional vibration-based method, as it is more economical, implemental, and reliable. With the deep learning (DL) method applied, the current-based methods have achieved satisfactory diagnosis accuracy. DL methods, however, demand large quantities of training samples, which are difficult to implement in real industrial sites. To tackle this problem, this paper proposes a novel lightweight fault diagnosis method based on Convolutional Neural Network (CNN), called CombFilterNet (CF-Net). The first convolutional layer of CF-Net is called CF-layer, where the convolution kernel is the comb filter kernel (CF-kernel). Each CF-kernel only has three parameters to be updated, achieving a lightweight design that makes CF-Net suitable for limited training sample conditions. The effectiveness and generalization ability of the proposed method are validated by a laboratory-acquired current dataset and an open-source vibration dataset. The results demonstrate that the proposed method is superior to the comparative methods under limited training sample conditions." @default.
- W4386702858 created "2023-09-14" @default.
- W4386702858 creator A5009464122 @default.
- W4386702858 creator A5014983239 @default.
- W4386702858 creator A5015179842 @default.
- W4386702858 creator A5043922626 @default.
- W4386702858 creator A5051616832 @default.
- W4386702858 date "2023-01-01" @default.
- W4386702858 modified "2023-10-06" @default.
- W4386702858 title "A Current-based Fault Diagnosis Method for Rotating Machinery with Limited Training Samples" @default.
- W4386702858 cites W1966796337 @default.
- W4386702858 cites W1973176617 @default.
- W4386702858 cites W1985250070 @default.
- W4386702858 cites W1995493586 @default.
- W4386702858 cites W2042641006 @default.
- W4386702858 cites W2046321661 @default.
- W4386702858 cites W2048076701 @default.
- W4386702858 cites W2147335249 @default.
- W4386702858 cites W2461729787 @default.
- W4386702858 cites W2584994008 @default.
- W4386702858 cites W2590288147 @default.
- W4386702858 cites W2592899773 @default.
- W4386702858 cites W2593875641 @default.
- W4386702858 cites W2605227842 @default.
- W4386702858 cites W2734669076 @default.
- W4386702858 cites W2768753204 @default.
- W4386702858 cites W2793629656 @default.
- W4386702858 cites W2898597600 @default.
- W4386702858 cites W2939053413 @default.
- W4386702858 cites W2947477257 @default.
- W4386702858 cites W2966507006 @default.
- W4386702858 cites W2967115638 @default.
- W4386702858 cites W2984201918 @default.
- W4386702858 cites W2995167577 @default.
- W4386702858 cites W3000736763 @default.
- W4386702858 cites W3025171967 @default.
- W4386702858 cites W3038041534 @default.
- W4386702858 cites W3046248607 @default.
- W4386702858 cites W3092600489 @default.
- W4386702858 cites W3094105523 @default.
- W4386702858 cites W3094159940 @default.
- W4386702858 cites W3109343305 @default.
- W4386702858 cites W3116325243 @default.
- W4386702858 cites W3122347867 @default.
- W4386702858 cites W3131423289 @default.
- W4386702858 cites W3150282857 @default.
- W4386702858 cites W3160495622 @default.
- W4386702858 cites W3173611137 @default.
- W4386702858 cites W3211127597 @default.
- W4386702858 cites W4206195980 @default.
- W4386702858 cites W4224435980 @default.
- W4386702858 cites W4226097944 @default.
- W4386702858 cites W4226507126 @default.
- W4386702858 doi "https://doi.org/10.1109/tim.2023.3314809" @default.
- W4386702858 hasPublicationYear "2023" @default.
- W4386702858 type Work @default.
- W4386702858 citedByCount "0" @default.
- W4386702858 crossrefType "journal-article" @default.
- W4386702858 hasAuthorship W4386702858A5009464122 @default.
- W4386702858 hasAuthorship W4386702858A5014983239 @default.
- W4386702858 hasAuthorship W4386702858A5015179842 @default.
- W4386702858 hasAuthorship W4386702858A5043922626 @default.
- W4386702858 hasAuthorship W4386702858A5051616832 @default.
- W4386702858 hasConcept C106131492 @default.
- W4386702858 hasConcept C11413529 @default.
- W4386702858 hasConcept C114614502 @default.
- W4386702858 hasConcept C121332964 @default.
- W4386702858 hasConcept C127313418 @default.
- W4386702858 hasConcept C134306372 @default.
- W4386702858 hasConcept C153180895 @default.
- W4386702858 hasConcept C153294291 @default.
- W4386702858 hasConcept C154945302 @default.
- W4386702858 hasConcept C165205528 @default.
- W4386702858 hasConcept C175551986 @default.
- W4386702858 hasConcept C177148314 @default.
- W4386702858 hasConcept C185592680 @default.
- W4386702858 hasConcept C198531522 @default.
- W4386702858 hasConcept C2777211547 @default.
- W4386702858 hasConcept C31972630 @default.
- W4386702858 hasConcept C33923547 @default.
- W4386702858 hasConcept C41008148 @default.
- W4386702858 hasConcept C43617362 @default.
- W4386702858 hasConcept C45347329 @default.
- W4386702858 hasConcept C50644808 @default.
- W4386702858 hasConcept C74193536 @default.
- W4386702858 hasConcept C81363708 @default.
- W4386702858 hasConceptScore W4386702858C106131492 @default.
- W4386702858 hasConceptScore W4386702858C11413529 @default.
- W4386702858 hasConceptScore W4386702858C114614502 @default.
- W4386702858 hasConceptScore W4386702858C121332964 @default.
- W4386702858 hasConceptScore W4386702858C127313418 @default.
- W4386702858 hasConceptScore W4386702858C134306372 @default.
- W4386702858 hasConceptScore W4386702858C153180895 @default.
- W4386702858 hasConceptScore W4386702858C153294291 @default.
- W4386702858 hasConceptScore W4386702858C154945302 @default.
- W4386702858 hasConceptScore W4386702858C165205528 @default.
- W4386702858 hasConceptScore W4386702858C175551986 @default.
- W4386702858 hasConceptScore W4386702858C177148314 @default.