Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386707112> ?p ?o ?g. }
- W4386707112 endingPage "121925" @default.
- W4386707112 startingPage "121925" @default.
- W4386707112 abstract "Monitoring the capacity of lithium-ion battery is a crucial task to ensure its safety and reliability during long-term use. However, conventional capacity estimation methods heavily rely on the specially designed operating conditions or durations of charge/discharge cycles, limiting their applications in real-world operations. To address such challenges, in this paper, a fast and flexible method is proposed to accurately estimate battery capacity based on a residual convolutional neural network using only small pieces of raw measurement data. And Bayesian optimization as well as network slimming are introduced to optimize and prune the network structure. Then, the proposed model is validated in two public battery degradation data sets, containing two types of batteries and six types of charging strategies in total. It's shown that the model is flexible enough to cope with the application scenarios of different charging strategies, different sampling frequencies and different voltage ranges starting at arbitrary initial SOCs, while still achieving fast and accurate capacity estimation. The mean absolute errors on 38 LFP batteries and 8 LCO batteries with a four-fold cross validation approach are all below 0.5% throughout the whole life of the batteries. Comprehensive case studies are also carried out to investigate the influence of capacity increment size, compression ratio of input data and the depth of network on the trade-offs between the model accuracy and its practicability for wide applications." @default.
- W4386707112 created "2023-09-14" @default.
- W4386707112 creator A5039291898 @default.
- W4386707112 creator A5041317708 @default.
- W4386707112 creator A5051346220 @default.
- W4386707112 creator A5055203023 @default.
- W4386707112 creator A5070538645 @default.
- W4386707112 creator A5075836878 @default.
- W4386707112 creator A5078975833 @default.
- W4386707112 date "2023-12-01" @default.
- W4386707112 modified "2023-10-16" @default.
- W4386707112 title "Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks" @default.
- W4386707112 cites W2022257050 @default.
- W4386707112 cites W2075108044 @default.
- W4386707112 cites W2137854933 @default.
- W4386707112 cites W2192203593 @default.
- W4386707112 cites W2201263372 @default.
- W4386707112 cites W2343549641 @default.
- W4386707112 cites W2525771308 @default.
- W4386707112 cites W2563343938 @default.
- W4386707112 cites W2743799144 @default.
- W4386707112 cites W2772728162 @default.
- W4386707112 cites W2809859787 @default.
- W4386707112 cites W2895147187 @default.
- W4386707112 cites W2901355765 @default.
- W4386707112 cites W2902107055 @default.
- W4386707112 cites W2915637418 @default.
- W4386707112 cites W2924382816 @default.
- W4386707112 cites W2935942259 @default.
- W4386707112 cites W2947706911 @default.
- W4386707112 cites W2963691557 @default.
- W4386707112 cites W2967729973 @default.
- W4386707112 cites W2972633682 @default.
- W4386707112 cites W2972641997 @default.
- W4386707112 cites W2985426613 @default.
- W4386707112 cites W2995448028 @default.
- W4386707112 cites W3014498250 @default.
- W4386707112 cites W3048997617 @default.
- W4386707112 cites W3096710383 @default.
- W4386707112 cites W3119025527 @default.
- W4386707112 cites W3137802065 @default.
- W4386707112 cites W3178534730 @default.
- W4386707112 cites W4205976837 @default.
- W4386707112 cites W4224947065 @default.
- W4386707112 cites W4225397198 @default.
- W4386707112 cites W4283790508 @default.
- W4386707112 cites W4302423542 @default.
- W4386707112 cites W4319311313 @default.
- W4386707112 doi "https://doi.org/10.1016/j.apenergy.2023.121925" @default.
- W4386707112 hasPublicationYear "2023" @default.
- W4386707112 type Work @default.
- W4386707112 citedByCount "0" @default.
- W4386707112 crossrefType "journal-article" @default.
- W4386707112 hasAuthorship W4386707112A5039291898 @default.
- W4386707112 hasAuthorship W4386707112A5041317708 @default.
- W4386707112 hasAuthorship W4386707112A5051346220 @default.
- W4386707112 hasAuthorship W4386707112A5055203023 @default.
- W4386707112 hasAuthorship W4386707112A5070538645 @default.
- W4386707112 hasAuthorship W4386707112A5075836878 @default.
- W4386707112 hasAuthorship W4386707112A5078975833 @default.
- W4386707112 hasConcept C11413529 @default.
- W4386707112 hasConcept C119599485 @default.
- W4386707112 hasConcept C119857082 @default.
- W4386707112 hasConcept C121332964 @default.
- W4386707112 hasConcept C127413603 @default.
- W4386707112 hasConcept C155512373 @default.
- W4386707112 hasConcept C163258240 @default.
- W4386707112 hasConcept C165801399 @default.
- W4386707112 hasConcept C200601418 @default.
- W4386707112 hasConcept C2776582896 @default.
- W4386707112 hasConcept C2989104859 @default.
- W4386707112 hasConcept C41008148 @default.
- W4386707112 hasConcept C43214815 @default.
- W4386707112 hasConcept C44154836 @default.
- W4386707112 hasConcept C555008776 @default.
- W4386707112 hasConcept C62520636 @default.
- W4386707112 hasConcept C79403827 @default.
- W4386707112 hasConcept C81363708 @default.
- W4386707112 hasConceptScore W4386707112C11413529 @default.
- W4386707112 hasConceptScore W4386707112C119599485 @default.
- W4386707112 hasConceptScore W4386707112C119857082 @default.
- W4386707112 hasConceptScore W4386707112C121332964 @default.
- W4386707112 hasConceptScore W4386707112C127413603 @default.
- W4386707112 hasConceptScore W4386707112C155512373 @default.
- W4386707112 hasConceptScore W4386707112C163258240 @default.
- W4386707112 hasConceptScore W4386707112C165801399 @default.
- W4386707112 hasConceptScore W4386707112C200601418 @default.
- W4386707112 hasConceptScore W4386707112C2776582896 @default.
- W4386707112 hasConceptScore W4386707112C2989104859 @default.
- W4386707112 hasConceptScore W4386707112C41008148 @default.
- W4386707112 hasConceptScore W4386707112C43214815 @default.
- W4386707112 hasConceptScore W4386707112C44154836 @default.
- W4386707112 hasConceptScore W4386707112C555008776 @default.
- W4386707112 hasConceptScore W4386707112C62520636 @default.
- W4386707112 hasConceptScore W4386707112C79403827 @default.
- W4386707112 hasConceptScore W4386707112C81363708 @default.
- W4386707112 hasFunder F4320309612 @default.
- W4386707112 hasFunder F4320321001 @default.