Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386707959> ?p ?o ?g. }
- W4386707959 endingPage "37195" @default.
- W4386707959 startingPage "37186" @default.
- W4386707959 abstract "Various toxicity and pharmacokinetic evaluations as screening experiments are needed at the drug discovery stage. Currently, to reduce the use of animal experiments and developmental expenses, the development of high-performance predictive models based on quantitative structure-activity relationship analysis is desired. From these evaluation targets, we selected 50% lethal dose (LD50), blood-brain barrier penetration (BBBP), and the clearance (CL) pathway for this investigation and constructed predictive models for each target using 636-11,886 compounds. First, we constructed predictive models using the DeepSnap-deep learning (DL) method and images of compounds as features. The calculated area under the curve (AUC) and balanced accuracy (BAC) were, respectively, 0.887 and 0.818 for LD50, 0.893 and 0.824 for BBBP, and 0.883 and 0.763 for the CL pathway. Next, molecular descriptors (MDs) of compounds were calculated using Molecular Operating Environment, alvaDesc, and ADMET Predictor to construct predictive models using the MD-based method. Using these MDs, we constructed predictive models using DataRobot. The calculated AUC and BAC were, respectively, 0.931 and 0.805 for LD50, 0.919 and 0.849 for BBBP, and 0.900 and 0.807 for the CL pathway. In this investigation, we constructed predictive models combining the DeepSnap-DL and MD-based methods. In ensemble models using the mean predictive probability of the DeepSnap-DL and MD-based methods, the calculated AUC and BAC were, respectively, 0.942 and 0.842 for LD50, 0.936 and 0.853 for BBBP, and 0.908 and 0.832 for the CL pathway, with improved predictive performance observed for all variables compared with either single method alone. Moreover, in consensus models that adopted only compounds for which the results of the two methods agreed, the calculated BAC for LD50, BBBP, and the CL pathway were 0.916, 0.918, and 0.847, respectively, indicating higher predictive performance than the ensemble models for all three variables. The predictive models combining the DeepSnap-DL and MD-based methods displayed high predictive performance for LD50, BBBP, and the CL pathway. Therefore, the application of this approach to prediction targets in various drug discovery screenings is expected to accelerate drug discovery." @default.
- W4386707959 created "2023-09-14" @default.
- W4386707959 creator A5013907089 @default.
- W4386707959 creator A5018686312 @default.
- W4386707959 creator A5057190375 @default.
- W4386707959 creator A5072295276 @default.
- W4386707959 creator A5075979564 @default.
- W4386707959 date "2023-09-13" @default.
- W4386707959 modified "2023-10-18" @default.
- W4386707959 title "Predictive Models Based on Molecular Images and Molecular Descriptors for Drug Screening" @default.
- W4386707959 cites W1894357711 @default.
- W4386707959 cites W1989629861 @default.
- W4386707959 cites W2012334764 @default.
- W4386707959 cites W2049334526 @default.
- W4386707959 cites W2050564499 @default.
- W4386707959 cites W2069336305 @default.
- W4386707959 cites W2155893237 @default.
- W4386707959 cites W2331069654 @default.
- W4386707959 cites W2356379002 @default.
- W4386707959 cites W2406943157 @default.
- W4386707959 cites W2499786820 @default.
- W4386707959 cites W2521868064 @default.
- W4386707959 cites W2566120766 @default.
- W4386707959 cites W2594183968 @default.
- W4386707959 cites W2808218386 @default.
- W4386707959 cites W2847686659 @default.
- W4386707959 cites W2886586773 @default.
- W4386707959 cites W2888959675 @default.
- W4386707959 cites W2892846700 @default.
- W4386707959 cites W2926001774 @default.
- W4386707959 cites W2930374839 @default.
- W4386707959 cites W2947920041 @default.
- W4386707959 cites W2963832292 @default.
- W4386707959 cites W2976294194 @default.
- W4386707959 cites W2981239143 @default.
- W4386707959 cites W3002778979 @default.
- W4386707959 cites W3002913990 @default.
- W4386707959 cites W3008779984 @default.
- W4386707959 cites W3011832258 @default.
- W4386707959 cites W3034798954 @default.
- W4386707959 cites W3041286284 @default.
- W4386707959 cites W3093609926 @default.
- W4386707959 cites W3095742169 @default.
- W4386707959 cites W3117501106 @default.
- W4386707959 cites W3128184796 @default.
- W4386707959 cites W3132353234 @default.
- W4386707959 cites W3158507782 @default.
- W4386707959 cites W3166272013 @default.
- W4386707959 cites W3182546001 @default.
- W4386707959 cites W3198353466 @default.
- W4386707959 cites W3198664897 @default.
- W4386707959 cites W3200893684 @default.
- W4386707959 cites W4200597495 @default.
- W4386707959 cites W4211082503 @default.
- W4386707959 doi "https://doi.org/10.1021/acsomega.3c04073" @default.
- W4386707959 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37841172" @default.
- W4386707959 hasPublicationYear "2023" @default.
- W4386707959 type Work @default.
- W4386707959 citedByCount "0" @default.
- W4386707959 crossrefType "journal-article" @default.
- W4386707959 hasAuthorship W4386707959A5013907089 @default.
- W4386707959 hasAuthorship W4386707959A5018686312 @default.
- W4386707959 hasAuthorship W4386707959A5057190375 @default.
- W4386707959 hasAuthorship W4386707959A5072295276 @default.
- W4386707959 hasAuthorship W4386707959A5075979564 @default.
- W4386707959 hasBestOaLocation W43867079591 @default.
- W4386707959 hasConcept C112705442 @default.
- W4386707959 hasConcept C119857082 @default.
- W4386707959 hasConcept C126322002 @default.
- W4386707959 hasConcept C154945302 @default.
- W4386707959 hasConcept C164126121 @default.
- W4386707959 hasConcept C164923092 @default.
- W4386707959 hasConcept C27181475 @default.
- W4386707959 hasConcept C3019719930 @default.
- W4386707959 hasConcept C3020225094 @default.
- W4386707959 hasConcept C41008148 @default.
- W4386707959 hasConcept C45804977 @default.
- W4386707959 hasConcept C71924100 @default.
- W4386707959 hasConcept C98274493 @default.
- W4386707959 hasConceptScore W4386707959C112705442 @default.
- W4386707959 hasConceptScore W4386707959C119857082 @default.
- W4386707959 hasConceptScore W4386707959C126322002 @default.
- W4386707959 hasConceptScore W4386707959C154945302 @default.
- W4386707959 hasConceptScore W4386707959C164126121 @default.
- W4386707959 hasConceptScore W4386707959C164923092 @default.
- W4386707959 hasConceptScore W4386707959C27181475 @default.
- W4386707959 hasConceptScore W4386707959C3019719930 @default.
- W4386707959 hasConceptScore W4386707959C3020225094 @default.
- W4386707959 hasConceptScore W4386707959C41008148 @default.
- W4386707959 hasConceptScore W4386707959C45804977 @default.
- W4386707959 hasConceptScore W4386707959C71924100 @default.
- W4386707959 hasConceptScore W4386707959C98274493 @default.
- W4386707959 hasIssue "40" @default.
- W4386707959 hasLocation W43867079591 @default.
- W4386707959 hasLocation W43867079592 @default.
- W4386707959 hasOpenAccess W4386707959 @default.
- W4386707959 hasPrimaryLocation W43867079591 @default.
- W4386707959 hasRelatedWork W1518515965 @default.