Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386708171> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4386708171 abstract "Interactions among atmospheric, root-soil, and vegetation processes drive carbon dioxide fluxes (Fc) from land to atmosphere. Eddy covariance measurements are commonly used to measure Fc at sub-daily timescales and validate process-based and data-driven models. However, these validations do not reveal process interactions, thresholds, and key differences in how models replicate them. We use information theory-based measures to explore multivariate information flow pathways from forcing data to observed and modeled hourly Fc, using flux tower datasets in the Midwestern U.S. in intensively managed corn-soybean landscapes. We compare Multiple Linear Regressions (MLR), Long-Short Term Memory (LSTM), and Random Forests (RF) to evaluate how different model structures use information from combinations of sources to predict Fc. We extend a framework for model predictive performance and functional performance, which examines the full suite of dependencies from all forcing variables to the observed or modeled target. Of the three model types, RF exhibited the highest functional and predictive performance. Regionally trained models demonstrate lower predictive but higher functional performance compared to site-specific models, suggesting superior reproduction of observed relationships. This study shows that some metrics of predictive performance encapsulate functional behaviors better than others, highlighting the need for multiple metrics of both types. This study improves our understanding of carbon fluxes in an intensively managed landscape, and more generally provides insight into how model structures and forcing variables translate to interactions that are well versus poorly captured in models." @default.
- W4386708171 created "2023-09-14" @default.
- W4386708171 creator A5013878747 @default.
- W4386708171 creator A5044297092 @default.
- W4386708171 date "2023-09-13" @default.
- W4386708171 modified "2023-10-18" @default.
- W4386708171 title "Causal Drivers of Land-Atmosphere Carbon Fluxes from Machine Learning Models and Data" @default.
- W4386708171 doi "https://doi.org/10.22541/essoar.169461977.71756051/v1" @default.
- W4386708171 hasPublicationYear "2023" @default.
- W4386708171 type Work @default.
- W4386708171 citedByCount "0" @default.
- W4386708171 crossrefType "posted-content" @default.
- W4386708171 hasAuthorship W4386708171A5013878747 @default.
- W4386708171 hasAuthorship W4386708171A5044297092 @default.
- W4386708171 hasBestOaLocation W43867081711 @default.
- W4386708171 hasConcept C105795698 @default.
- W4386708171 hasConcept C110872660 @default.
- W4386708171 hasConcept C119857082 @default.
- W4386708171 hasConcept C127313418 @default.
- W4386708171 hasConcept C161584116 @default.
- W4386708171 hasConcept C178650346 @default.
- W4386708171 hasConcept C18903297 @default.
- W4386708171 hasConcept C197115733 @default.
- W4386708171 hasConcept C2781162219 @default.
- W4386708171 hasConcept C33923547 @default.
- W4386708171 hasConcept C35187779 @default.
- W4386708171 hasConcept C39432304 @default.
- W4386708171 hasConcept C41008148 @default.
- W4386708171 hasConcept C86803240 @default.
- W4386708171 hasConcept C91586092 @default.
- W4386708171 hasConceptScore W4386708171C105795698 @default.
- W4386708171 hasConceptScore W4386708171C110872660 @default.
- W4386708171 hasConceptScore W4386708171C119857082 @default.
- W4386708171 hasConceptScore W4386708171C127313418 @default.
- W4386708171 hasConceptScore W4386708171C161584116 @default.
- W4386708171 hasConceptScore W4386708171C178650346 @default.
- W4386708171 hasConceptScore W4386708171C18903297 @default.
- W4386708171 hasConceptScore W4386708171C197115733 @default.
- W4386708171 hasConceptScore W4386708171C2781162219 @default.
- W4386708171 hasConceptScore W4386708171C33923547 @default.
- W4386708171 hasConceptScore W4386708171C35187779 @default.
- W4386708171 hasConceptScore W4386708171C39432304 @default.
- W4386708171 hasConceptScore W4386708171C41008148 @default.
- W4386708171 hasConceptScore W4386708171C86803240 @default.
- W4386708171 hasConceptScore W4386708171C91586092 @default.
- W4386708171 hasLocation W43867081711 @default.
- W4386708171 hasOpenAccess W4386708171 @default.
- W4386708171 hasPrimaryLocation W43867081711 @default.
- W4386708171 hasRelatedWork W1497159107 @default.
- W4386708171 hasRelatedWork W2013048391 @default.
- W4386708171 hasRelatedWork W2027196732 @default.
- W4386708171 hasRelatedWork W2089213897 @default.
- W4386708171 hasRelatedWork W2371438128 @default.
- W4386708171 hasRelatedWork W2899084033 @default.
- W4386708171 hasRelatedWork W3025155372 @default.
- W4386708171 hasRelatedWork W3164066767 @default.
- W4386708171 hasRelatedWork W4295168957 @default.
- W4386708171 hasRelatedWork W4297282674 @default.
- W4386708171 isParatext "false" @default.
- W4386708171 isRetracted "false" @default.
- W4386708171 workType "article" @default.