Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386711738> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4386711738 abstract "Local differential privacy (LDP) is a promising privacy model for distributed data collection. It has been widely deployed in real-world systems (e.g. Chrome, iOS, macOS). In LDP-based mechanisms, an aggregator collects private values perturbed by each user and then analyses these values to estimate their statistics, such as frequency and mean. Most existing works focus on simple scalar value types, such as boolean and categorical values. However, with the emergence of smart sensors and Internet of Things, high-dimensional data are gaining increasing popularity. In many cases where more than one type of sensor data are collected simultaneously, correlations exist between various attributes of such data, e.g. temperature and luminance. To ensure LDP for high-dimensional data, existing solutions either partition the privacy budget ϵ among these correlated attributes or adopt sampling, both of which dilute the density of useful information and thus result in poor data utility. In this paper, we propose a relaxed LDP model, namely, univariate dominance local differential privacy (UDLDP), for high-dimensional data. We quantify the correlations between attributes and present a correlation-bounded perturbation (CBP) mechanism that optimizes the partitioning of privacy budget on each correlated attribute. Furthermore, we extend CBP to support sampling, which is a common bandwidth reduction technique in sensor networks and Internet of Things. We derive the best allocation strategy of sampling probabilities among attributes in terms of data utility, which leads to the correlation-bounded perturbation mechanism with sampling (CBPS). Finally, we discuss how to collect and leverage the correlation from real-time data stream with a by-round algorithm to enhance the utility. The performance of the proposed mechanisms is evaluated and compared with state-of-the-art LDP mechanisms on real-world and synthetic datasets." @default.
- W4386711738 created "2023-09-14" @default.
- W4386711738 creator A5001652101 @default.
- W4386711738 creator A5014319544 @default.
- W4386711738 creator A5051088560 @default.
- W4386711738 creator A5070139134 @default.
- W4386711738 date "2023-09-13" @default.
- W4386711738 modified "2023-09-27" @default.
- W4386711738 title "Collecting Multi-type and Correlation-Constrained Streaming Sensor Data with Local Differential Privacy" @default.
- W4386711738 cites W1966072539 @default.
- W4386711738 cites W1989618704 @default.
- W4386711738 cites W1996718482 @default.
- W4386711738 cites W2013823004 @default.
- W4386711738 cites W2053801139 @default.
- W4386711738 cites W2085472312 @default.
- W4386711738 cites W2109426455 @default.
- W4386711738 cites W2123820077 @default.
- W4386711738 cites W2123820440 @default.
- W4386711738 cites W2148002238 @default.
- W4386711738 cites W2151320232 @default.
- W4386711738 cites W2284973007 @default.
- W4386711738 cites W2560610000 @default.
- W4386711738 cites W2566050141 @default.
- W4386711738 cites W2604210931 @default.
- W4386711738 cites W2963629772 @default.
- W4386711738 cites W3030047573 @default.
- W4386711738 cites W3102407811 @default.
- W4386711738 cites W3102859907 @default.
- W4386711738 cites W3102891118 @default.
- W4386711738 cites W3153402319 @default.
- W4386711738 cites W3153901951 @default.
- W4386711738 cites W3183408824 @default.
- W4386711738 cites W4221167179 @default.
- W4386711738 cites W4323671161 @default.
- W4386711738 doi "https://doi.org/10.1145/3623637" @default.
- W4386711738 hasPublicationYear "2023" @default.
- W4386711738 type Work @default.
- W4386711738 citedByCount "0" @default.
- W4386711738 crossrefType "journal-article" @default.
- W4386711738 hasAuthorship W4386711738A5001652101 @default.
- W4386711738 hasAuthorship W4386711738A5014319544 @default.
- W4386711738 hasAuthorship W4386711738A5051088560 @default.
- W4386711738 hasAuthorship W4386711738A5070139134 @default.
- W4386711738 hasBestOaLocation W43867117381 @default.
- W4386711738 hasConcept C108827166 @default.
- W4386711738 hasConcept C119857082 @default.
- W4386711738 hasConcept C123201435 @default.
- W4386711738 hasConcept C124101348 @default.
- W4386711738 hasConcept C134306372 @default.
- W4386711738 hasConcept C23130292 @default.
- W4386711738 hasConcept C33923547 @default.
- W4386711738 hasConcept C34388435 @default.
- W4386711738 hasConcept C41008148 @default.
- W4386711738 hasConcept C5274069 @default.
- W4386711738 hasConceptScore W4386711738C108827166 @default.
- W4386711738 hasConceptScore W4386711738C119857082 @default.
- W4386711738 hasConceptScore W4386711738C123201435 @default.
- W4386711738 hasConceptScore W4386711738C124101348 @default.
- W4386711738 hasConceptScore W4386711738C134306372 @default.
- W4386711738 hasConceptScore W4386711738C23130292 @default.
- W4386711738 hasConceptScore W4386711738C33923547 @default.
- W4386711738 hasConceptScore W4386711738C34388435 @default.
- W4386711738 hasConceptScore W4386711738C41008148 @default.
- W4386711738 hasConceptScore W4386711738C5274069 @default.
- W4386711738 hasLocation W43867117381 @default.
- W4386711738 hasOpenAccess W4386711738 @default.
- W4386711738 hasPrimaryLocation W43867117381 @default.
- W4386711738 hasRelatedWork W1990534671 @default.
- W4386711738 hasRelatedWork W2954602301 @default.
- W4386711738 hasRelatedWork W2970971333 @default.
- W4386711738 hasRelatedWork W2990255990 @default.
- W4386711738 hasRelatedWork W3005587166 @default.
- W4386711738 hasRelatedWork W3005947044 @default.
- W4386711738 hasRelatedWork W4226401720 @default.
- W4386711738 hasRelatedWork W4310562558 @default.
- W4386711738 hasRelatedWork W4377712905 @default.
- W4386711738 hasRelatedWork W2978064855 @default.
- W4386711738 isParatext "false" @default.
- W4386711738 isRetracted "false" @default.
- W4386711738 workType "article" @default.