Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386713152> ?p ?o ?g. }
- W4386713152 endingPage "4534" @default.
- W4386713152 startingPage "4534" @default.
- W4386713152 abstract "Current prognostic models lack the use of pre-operative CT images to predict recurrence in endometrial cancer (EC) patients. Our study aimed to investigate the potential of radiomic features extracted from pre-surgical CT scans to accurately predict disease-free survival (DFS) among EC patients.Contrast-Enhanced CT (CE-CT) scans from 81 EC cases were used to extract the radiomic features from semi-automatically contoured volumes of interest. We employed a 10-fold cross-validation approach with a 6:4 training to test set and utilized data augmentation and balancing techniques. Univariate analysis was applied for feature reduction leading to the development of three distinct machine learning (ML) models for the prediction of DFS: LASSO-Cox, CoxBoost and Random Forest (RFsrc).In the training set, the ML models demonstrated AUCs ranging from 0.92 to 0.93, sensitivities from 0.96 to 1.00 and specificities from 0.77 to 0.89. In the test set, AUCs ranged from 0.86 to 0.90, sensitivities from 0.89 to 1.00 and specificities from 0.73 to 0.90. Patients classified as having a high recurrence risk prediction by ML models exhibited significantly worse DSF (p-value < 0.001) across all models.Our findings demonstrate the potential of radiomics in predicting EC recurrence. While further validation studies are needed, our results underscore the promising role of radiomics in forecasting EC outcomes." @default.
- W4386713152 created "2023-09-14" @default.
- W4386713152 creator A5002349845 @default.
- W4386713152 creator A5011391795 @default.
- W4386713152 creator A5016740061 @default.
- W4386713152 creator A5020190465 @default.
- W4386713152 creator A5038579623 @default.
- W4386713152 creator A5047885373 @default.
- W4386713152 creator A5048396385 @default.
- W4386713152 creator A5049108457 @default.
- W4386713152 creator A5049212835 @default.
- W4386713152 creator A5056084163 @default.
- W4386713152 creator A5059979251 @default.
- W4386713152 creator A5068266329 @default.
- W4386713152 creator A5086086408 @default.
- W4386713152 creator A5089554789 @default.
- W4386713152 creator A5090926959 @default.
- W4386713152 creator A5092439233 @default.
- W4386713152 creator A5092863850 @default.
- W4386713152 date "2023-09-13" @default.
- W4386713152 modified "2023-10-17" @default.
- W4386713152 title "A Radiomic-Based Machine Learning Model Predicts Endometrial Cancer Recurrence Using Preoperative CT Radiomic Features: A Pilot Study" @default.
- W4386713152 cites W1883484737 @default.
- W4386713152 cites W1903539786 @default.
- W4386713152 cites W1967885757 @default.
- W4386713152 cites W1988262403 @default.
- W4386713152 cites W1990272636 @default.
- W4386713152 cites W1993947467 @default.
- W4386713152 cites W2041440766 @default.
- W4386713152 cites W2067644090 @default.
- W4386713152 cites W2074798508 @default.
- W4386713152 cites W2090725719 @default.
- W4386713152 cites W2097360283 @default.
- W4386713152 cites W2123725304 @default.
- W4386713152 cites W2148143831 @default.
- W4386713152 cites W2149199519 @default.
- W4386713152 cites W2152575748 @default.
- W4386713152 cites W2154851241 @default.
- W4386713152 cites W2334260011 @default.
- W4386713152 cites W2409026824 @default.
- W4386713152 cites W2460787864 @default.
- W4386713152 cites W2461051203 @default.
- W4386713152 cites W2560306085 @default.
- W4386713152 cites W2767128594 @default.
- W4386713152 cites W2792347954 @default.
- W4386713152 cites W2814443290 @default.
- W4386713152 cites W2887321790 @default.
- W4386713152 cites W2888082487 @default.
- W4386713152 cites W2897326474 @default.
- W4386713152 cites W2899057869 @default.
- W4386713152 cites W2899502636 @default.
- W4386713152 cites W2900810470 @default.
- W4386713152 cites W2915829734 @default.
- W4386713152 cites W2963613787 @default.
- W4386713152 cites W2980231344 @default.
- W4386713152 cites W2994739006 @default.
- W4386713152 cites W2995292698 @default.
- W4386713152 cites W2996314623 @default.
- W4386713152 cites W3005252897 @default.
- W4386713152 cites W3008224659 @default.
- W4386713152 cites W3014382673 @default.
- W4386713152 cites W3022680805 @default.
- W4386713152 cites W3042297952 @default.
- W4386713152 cites W3047272901 @default.
- W4386713152 cites W3087606992 @default.
- W4386713152 cites W3090988958 @default.
- W4386713152 cites W3094486545 @default.
- W4386713152 cites W3105297947 @default.
- W4386713152 cites W3114074286 @default.
- W4386713152 cites W3128646645 @default.
- W4386713152 cites W3129825571 @default.
- W4386713152 cites W3136632344 @default.
- W4386713152 cites W3136881316 @default.
- W4386713152 cites W3175110812 @default.
- W4386713152 cites W3191363270 @default.
- W4386713152 cites W3217751728 @default.
- W4386713152 cites W4200412921 @default.
- W4386713152 cites W4213428611 @default.
- W4386713152 cites W4214890584 @default.
- W4386713152 cites W4221007540 @default.
- W4386713152 cites W4255462147 @default.
- W4386713152 cites W4281636240 @default.
- W4386713152 cites W4282923449 @default.
- W4386713152 cites W4285232639 @default.
- W4386713152 cites W4292179984 @default.
- W4386713152 cites W4294541781 @default.
- W4386713152 cites W4310961803 @default.
- W4386713152 cites W4311897849 @default.
- W4386713152 cites W4313248711 @default.
- W4386713152 cites W4313566515 @default.
- W4386713152 cites W4317685776 @default.
- W4386713152 cites W4322766744 @default.
- W4386713152 doi "https://doi.org/10.3390/cancers15184534" @default.
- W4386713152 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37760503" @default.
- W4386713152 hasPublicationYear "2023" @default.
- W4386713152 type Work @default.
- W4386713152 citedByCount "0" @default.
- W4386713152 crossrefType "journal-article" @default.