Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386713181> ?p ?o ?g. }
- W4386713181 endingPage "7846" @default.
- W4386713181 startingPage "7846" @default.
- W4386713181 abstract "Trajectory planning plays a crucial role in ensuring the safe navigation of ships, as it involves complex decision making influenced by various factors. This paper presents a heuristic algorithm, named the Markov decision process Heuristic Algorithm (MHA), for time-optimized avoidance of Unmanned Surface Vehicles (USVs) based on a Risk-Sensitive Markov decision process model. The proposed method utilizes the Risk-Sensitive Markov decision process model to generate a set of states within the USV collision avoidance search space. These states are determined based on the reachable locations and directions considering the time cost associated with the set of actions. By incorporating an enhanced reward function and a constraint time-dependent cost function, the USV can effectively plan practical motion paths that align with its actual time constraints. Experimental results demonstrate that the MHA algorithm enables decision makers to evaluate the trade-off between the budget and the probability of achieving the goal within the given budget. Moreover, the local stochastic optimization criterion assists the agent in selecting collision avoidance paths without significantly increasing the risk of collision." @default.
- W4386713181 created "2023-09-14" @default.
- W4386713181 creator A5048005515 @default.
- W4386713181 creator A5089048885 @default.
- W4386713181 date "2023-09-13" @default.
- W4386713181 modified "2023-09-29" @default.
- W4386713181 title "Risk-Sensitive Markov Decision Processes of USV Trajectory Planning with Time-Limited Budget" @default.
- W4386713181 cites W2002440441 @default.
- W4386713181 cites W2149137843 @default.
- W4386713181 cites W2763450331 @default.
- W4386713181 cites W2943356268 @default.
- W4386713181 cites W2949530148 @default.
- W4386713181 cites W2955357139 @default.
- W4386713181 cites W2956478786 @default.
- W4386713181 cites W2977716320 @default.
- W4386713181 cites W3003498136 @default.
- W4386713181 cites W3015055301 @default.
- W4386713181 cites W3033068985 @default.
- W4386713181 cites W3033529302 @default.
- W4386713181 cites W3036024369 @default.
- W4386713181 cites W3088877698 @default.
- W4386713181 cites W3089181703 @default.
- W4386713181 cites W3105606949 @default.
- W4386713181 cites W3120538008 @default.
- W4386713181 cites W3128466740 @default.
- W4386713181 cites W3129445642 @default.
- W4386713181 cites W3132663004 @default.
- W4386713181 cites W3152751253 @default.
- W4386713181 cites W3163513073 @default.
- W4386713181 cites W3164309343 @default.
- W4386713181 cites W3166194567 @default.
- W4386713181 cites W3184349103 @default.
- W4386713181 cites W3196384719 @default.
- W4386713181 cites W3200473303 @default.
- W4386713181 cites W3208250807 @default.
- W4386713181 cites W3215237054 @default.
- W4386713181 cites W4205099657 @default.
- W4386713181 cites W4210942808 @default.
- W4386713181 cites W4223631416 @default.
- W4386713181 cites W4225497946 @default.
- W4386713181 cites W4233349698 @default.
- W4386713181 cites W4244387609 @default.
- W4386713181 cites W4250468668 @default.
- W4386713181 cites W4281261483 @default.
- W4386713181 cites W4297004156 @default.
- W4386713181 cites W4298289592 @default.
- W4386713181 cites W4313026854 @default.
- W4386713181 cites W4323923317 @default.
- W4386713181 cites W4376630026 @default.
- W4386713181 cites W4385248025 @default.
- W4386713181 cites W4385284504 @default.
- W4386713181 doi "https://doi.org/10.3390/s23187846" @default.
- W4386713181 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37765903" @default.
- W4386713181 hasPublicationYear "2023" @default.
- W4386713181 type Work @default.
- W4386713181 citedByCount "0" @default.
- W4386713181 crossrefType "journal-article" @default.
- W4386713181 hasAuthorship W4386713181A5048005515 @default.
- W4386713181 hasAuthorship W4386713181A5089048885 @default.
- W4386713181 hasBestOaLocation W43867131811 @default.
- W4386713181 hasConcept C105795698 @default.
- W4386713181 hasConcept C106189395 @default.
- W4386713181 hasConcept C111919701 @default.
- W4386713181 hasConcept C119857082 @default.
- W4386713181 hasConcept C121332964 @default.
- W4386713181 hasConcept C121704057 @default.
- W4386713181 hasConcept C126255220 @default.
- W4386713181 hasConcept C127413603 @default.
- W4386713181 hasConcept C1276947 @default.
- W4386713181 hasConcept C13662910 @default.
- W4386713181 hasConcept C14036430 @default.
- W4386713181 hasConcept C154945302 @default.
- W4386713181 hasConcept C159886148 @default.
- W4386713181 hasConcept C173801870 @default.
- W4386713181 hasConcept C177264268 @default.
- W4386713181 hasConcept C17744445 @default.
- W4386713181 hasConcept C199360897 @default.
- W4386713181 hasConcept C199539241 @default.
- W4386713181 hasConcept C2775907273 @default.
- W4386713181 hasConcept C2780864053 @default.
- W4386713181 hasConcept C33923547 @default.
- W4386713181 hasConcept C38652104 @default.
- W4386713181 hasConcept C41008148 @default.
- W4386713181 hasConcept C42475967 @default.
- W4386713181 hasConcept C78458016 @default.
- W4386713181 hasConcept C86803240 @default.
- W4386713181 hasConcept C98045186 @default.
- W4386713181 hasConcept C98763669 @default.
- W4386713181 hasConceptScore W4386713181C105795698 @default.
- W4386713181 hasConceptScore W4386713181C106189395 @default.
- W4386713181 hasConceptScore W4386713181C111919701 @default.
- W4386713181 hasConceptScore W4386713181C119857082 @default.
- W4386713181 hasConceptScore W4386713181C121332964 @default.
- W4386713181 hasConceptScore W4386713181C121704057 @default.
- W4386713181 hasConceptScore W4386713181C126255220 @default.
- W4386713181 hasConceptScore W4386713181C127413603 @default.
- W4386713181 hasConceptScore W4386713181C1276947 @default.
- W4386713181 hasConceptScore W4386713181C13662910 @default.