Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386715511> ?p ?o ?g. }
- W4386715511 endingPage "3860" @default.
- W4386715511 startingPage "3860" @default.
- W4386715511 abstract "One of the most important elements of the reliability structure of a motor vessel is its power subsystem, with the most crucial component being the engine. An engine failure excludes the ship from operation or significantly limits its operation. Therefore, accurate fault diagnosis should be a crucial issue for modern maintenance strategies. In mechanical engineering, the vibration and acoustic signals recorded during the operation of the device are the most meaningful data used to identify the reliability state. In this paper, a novel system-oriented method of reliability state identification is proposed. The method consists of the analysis of the vibration and noise signals collected on each of the engine cylinders using supervised machine learning. The main novelty of this method is data augmentation application and SVM classifier implementation. Due to these aspects, the method becomes robust in the case of poor-quality data or a limited and incomplete learning dataset. The quality of the proposed identification method was evaluated by addressing a new industrial issue (Sulzer 6AL20/24 marine engine reliability state identification). During the tests, the efficiency of the method was analyzed in the case of a complete learning data set (all types of inability states were presented in the learning data set) and an incomplete learning data set (in the testing data set, there were new types of inability states). As a result, in both cases, a very high (100%) identification accuracy of the reliability state and the type of inability state was obtained. This is a significant increase in accuracy (4.6% for the complete and 22% for the incomplete learning data set) in comparison to the efficiency of the same method without the use of machine learning and data science." @default.
- W4386715511 created "2023-09-14" @default.
- W4386715511 creator A5017152974 @default.
- W4386715511 creator A5038897599 @default.
- W4386715511 creator A5048481468 @default.
- W4386715511 creator A5052200911 @default.
- W4386715511 creator A5069095639 @default.
- W4386715511 date "2023-09-12" @default.
- W4386715511 modified "2023-09-30" @default.
- W4386715511 title "Ship Diesel Engine Fault Diagnosis Using Data Science and Machine Learning" @default.
- W4386715511 cites W1196777648 @default.
- W4386715511 cites W1546200511 @default.
- W4386715511 cites W1862406309 @default.
- W4386715511 cites W2057842719 @default.
- W4386715511 cites W2442309921 @default.
- W4386715511 cites W2520630553 @default.
- W4386715511 cites W2560026922 @default.
- W4386715511 cites W2563605870 @default.
- W4386715511 cites W2575828067 @default.
- W4386715511 cites W2766182168 @default.
- W4386715511 cites W2778352504 @default.
- W4386715511 cites W2884105239 @default.
- W4386715511 cites W2884722635 @default.
- W4386715511 cites W2889505988 @default.
- W4386715511 cites W2894738625 @default.
- W4386715511 cites W2911279749 @default.
- W4386715511 cites W2913801035 @default.
- W4386715511 cites W2918285655 @default.
- W4386715511 cites W2937168566 @default.
- W4386715511 cites W2946094116 @default.
- W4386715511 cites W2954709958 @default.
- W4386715511 cites W2978219032 @default.
- W4386715511 cites W2980659048 @default.
- W4386715511 cites W2982098417 @default.
- W4386715511 cites W3013108398 @default.
- W4386715511 cites W3018137638 @default.
- W4386715511 cites W3023920206 @default.
- W4386715511 cites W3046296398 @default.
- W4386715511 cites W3048960489 @default.
- W4386715511 cites W3101667008 @default.
- W4386715511 cites W3146977894 @default.
- W4386715511 cites W3174576536 @default.
- W4386715511 cites W3191026187 @default.
- W4386715511 cites W3192226183 @default.
- W4386715511 cites W3201032882 @default.
- W4386715511 cites W3211566310 @default.
- W4386715511 cites W3211973648 @default.
- W4386715511 cites W3212299799 @default.
- W4386715511 cites W3212680212 @default.
- W4386715511 cites W3217424478 @default.
- W4386715511 cites W4205349063 @default.
- W4386715511 cites W4223935544 @default.
- W4386715511 cites W4242807807 @default.
- W4386715511 cites W4285240039 @default.
- W4386715511 cites W4296425704 @default.
- W4386715511 cites W4308156423 @default.
- W4386715511 cites W4321609132 @default.
- W4386715511 cites W4352987237 @default.
- W4386715511 cites W4361275963 @default.
- W4386715511 cites W4367626240 @default.
- W4386715511 doi "https://doi.org/10.3390/electronics12183860" @default.
- W4386715511 hasPublicationYear "2023" @default.
- W4386715511 type Work @default.
- W4386715511 citedByCount "0" @default.
- W4386715511 crossrefType "journal-article" @default.
- W4386715511 hasAuthorship W4386715511A5017152974 @default.
- W4386715511 hasAuthorship W4386715511A5038897599 @default.
- W4386715511 hasAuthorship W4386715511A5048481468 @default.
- W4386715511 hasAuthorship W4386715511A5052200911 @default.
- W4386715511 hasAuthorship W4386715511A5069095639 @default.
- W4386715511 hasBestOaLocation W43867155111 @default.
- W4386715511 hasConcept C116834253 @default.
- W4386715511 hasConcept C119599485 @default.
- W4386715511 hasConcept C119857082 @default.
- W4386715511 hasConcept C121332964 @default.
- W4386715511 hasConcept C12267149 @default.
- W4386715511 hasConcept C124101348 @default.
- W4386715511 hasConcept C127313418 @default.
- W4386715511 hasConcept C127413603 @default.
- W4386715511 hasConcept C133731056 @default.
- W4386715511 hasConcept C154945302 @default.
- W4386715511 hasConcept C163258240 @default.
- W4386715511 hasConcept C165205528 @default.
- W4386715511 hasConcept C171146098 @default.
- W4386715511 hasConcept C175551986 @default.
- W4386715511 hasConcept C2775846686 @default.
- W4386715511 hasConcept C2780804531 @default.
- W4386715511 hasConcept C41008148 @default.
- W4386715511 hasConcept C43214815 @default.
- W4386715511 hasConcept C59822182 @default.
- W4386715511 hasConcept C62520636 @default.
- W4386715511 hasConcept C86803240 @default.
- W4386715511 hasConcept C95623464 @default.
- W4386715511 hasConceptScore W4386715511C116834253 @default.
- W4386715511 hasConceptScore W4386715511C119599485 @default.
- W4386715511 hasConceptScore W4386715511C119857082 @default.
- W4386715511 hasConceptScore W4386715511C121332964 @default.
- W4386715511 hasConceptScore W4386715511C12267149 @default.