Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386722017> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4386722017 abstract "Data-driven research in Additive Manufacturing (AM) has gained significant success in recent years. This has led to a plethora of scientific literature to emerge. The knowledge in these works consists of AM and Artificial Intelligence (AI) contexts that have not been mined and formalized in an integrated way. Moreover, no tools or guidelines exist to support data-driven knowledge transfer from one context to another. As a result, data-driven solutions using specific AI techniques are being developed and validated only for specific AM process technologies. There is a potential to exploit the inherent similarities across various AM technologies and adapt the existing solutions from one process or problem to another using AI, such as Transfer Learning. We propose a three-step knowledge transferability analysis framework in AM to support data-driven AM knowledge transfer. As a prerequisite to transferability analysis, AM knowledge is featurized into identified knowledge components. The framework consists of pre-transfer, transfer, and post-transfer steps to accomplish knowledge transfer. A case study is conducted between flagship metal AM processes. Laser Powder Bed Fusion (LPBF) is the source of knowledge motivated by its relative matureness in applying AI over Directed Energy Deposition (DED), which drives the need for knowledge transfer as the less explored target process. We show successful transfer at different levels of the data-driven solution, including data representation, model architecture, and model parameters. The pipeline of AM knowledge transfer can be automated in the future to allow efficient cross-context or cross-process knowledge exchange." @default.
- W4386722017 created "2023-09-14" @default.
- W4386722017 creator A5021088757 @default.
- W4386722017 creator A5045060035 @default.
- W4386722017 creator A5048145318 @default.
- W4386722017 creator A5057931796 @default.
- W4386722017 creator A5070626046 @default.
- W4386722017 creator A5072607312 @default.
- W4386722017 date "2023-09-12" @default.
- W4386722017 modified "2023-09-30" @default.
- W4386722017 title "Transferability analysis of data-driven additive manufacturing knowledge: a case study between powder bed fusion and directed energy deposition" @default.
- W4386722017 doi "https://doi.org/10.48550/arxiv.2309.06286" @default.
- W4386722017 hasPublicationYear "2023" @default.
- W4386722017 type Work @default.
- W4386722017 citedByCount "0" @default.
- W4386722017 crossrefType "posted-content" @default.
- W4386722017 hasAuthorship W4386722017A5021088757 @default.
- W4386722017 hasAuthorship W4386722017A5045060035 @default.
- W4386722017 hasAuthorship W4386722017A5048145318 @default.
- W4386722017 hasAuthorship W4386722017A5057931796 @default.
- W4386722017 hasAuthorship W4386722017A5070626046 @default.
- W4386722017 hasAuthorship W4386722017A5072607312 @default.
- W4386722017 hasBestOaLocation W43867220171 @default.
- W4386722017 hasConcept C111919701 @default.
- W4386722017 hasConcept C119857082 @default.
- W4386722017 hasConcept C120567893 @default.
- W4386722017 hasConcept C140331021 @default.
- W4386722017 hasConcept C150899416 @default.
- W4386722017 hasConcept C151730666 @default.
- W4386722017 hasConcept C154945302 @default.
- W4386722017 hasConcept C199360897 @default.
- W4386722017 hasConcept C2522767166 @default.
- W4386722017 hasConcept C2776960227 @default.
- W4386722017 hasConcept C2779343474 @default.
- W4386722017 hasConcept C41008148 @default.
- W4386722017 hasConcept C43521106 @default.
- W4386722017 hasConcept C56739046 @default.
- W4386722017 hasConcept C61272859 @default.
- W4386722017 hasConcept C86803240 @default.
- W4386722017 hasConcept C98045186 @default.
- W4386722017 hasConceptScore W4386722017C111919701 @default.
- W4386722017 hasConceptScore W4386722017C119857082 @default.
- W4386722017 hasConceptScore W4386722017C120567893 @default.
- W4386722017 hasConceptScore W4386722017C140331021 @default.
- W4386722017 hasConceptScore W4386722017C150899416 @default.
- W4386722017 hasConceptScore W4386722017C151730666 @default.
- W4386722017 hasConceptScore W4386722017C154945302 @default.
- W4386722017 hasConceptScore W4386722017C199360897 @default.
- W4386722017 hasConceptScore W4386722017C2522767166 @default.
- W4386722017 hasConceptScore W4386722017C2776960227 @default.
- W4386722017 hasConceptScore W4386722017C2779343474 @default.
- W4386722017 hasConceptScore W4386722017C41008148 @default.
- W4386722017 hasConceptScore W4386722017C43521106 @default.
- W4386722017 hasConceptScore W4386722017C56739046 @default.
- W4386722017 hasConceptScore W4386722017C61272859 @default.
- W4386722017 hasConceptScore W4386722017C86803240 @default.
- W4386722017 hasConceptScore W4386722017C98045186 @default.
- W4386722017 hasLocation W43867220171 @default.
- W4386722017 hasOpenAccess W4386722017 @default.
- W4386722017 hasPrimaryLocation W43867220171 @default.
- W4386722017 hasRelatedWork W111931835 @default.
- W4386722017 hasRelatedWork W1551255045 @default.
- W4386722017 hasRelatedWork W2009286279 @default.
- W4386722017 hasRelatedWork W2061327663 @default.
- W4386722017 hasRelatedWork W2096059703 @default.
- W4386722017 hasRelatedWork W2185997624 @default.
- W4386722017 hasRelatedWork W2912595292 @default.
- W4386722017 hasRelatedWork W3165500042 @default.
- W4386722017 hasRelatedWork W3207383626 @default.
- W4386722017 hasRelatedWork W4385568315 @default.
- W4386722017 isParatext "false" @default.
- W4386722017 isRetracted "false" @default.
- W4386722017 workType "article" @default.