Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386725532> ?p ?o ?g. }
- W4386725532 abstract "Response assessment to neoadjuvant systemic treatment (NAST) to guide individualized treatment in breast cancer is a clinical research priority. We aimed to develop an intelligent algorithm using multi-modal pretreatment ultrasound and tomosynthesis radiomics features in addition to clinical variables to predict pathologic complete response (pCR) prior to the initiation of therapy.We used retrospective data on patients who underwent ultrasound and tomosynthesis before starting NAST. We developed a support vector machine algorithm using pretreatment ultrasound and tomosynthesis radiomics features in addition to patient and tumor variables to predict pCR status (ypT0 and ypN0). Findings were compared to the histopathologic evaluation of the surgical specimen. The main outcome measures were area under the curve (AUC) and false-negative rate (FNR).We included 720 patients, 504 in the development set and 216 in the validation set. Median age was 51.6 years and 33.6% (242 of 720) achieved pCR. The addition of radiomics features significantly improved the performance of the algorithm (AUC 0.72 to 0.81; p = 0.007). The FNR of the multi-modal radiomics and clinical algorithm was 6.7% (10 of 150 with missed residual cancer). Surface/volume ratio at tomosynthesis and peritumoral entropy characteristics at ultrasound were the most relevant radiomics. Hormonal receptors and HER-2 status were the most important clinical predictors.A multi-modal machine learning algorithm with pretreatment clinical, ultrasound, and tomosynthesis radiomics features may aid in predicting residual cancer after NAST. Pending prospective validation, this may facilitate individually tailored NAST regimens.Multi-modal radiomics using pretreatment ultrasound and tomosynthesis showed significant improvement in assessing response to NAST compared to an algorithm using clinical variables only. Further prospective validation of our findings seems warranted to enable individualized predictions of NAST outcomes.• We proposed a multi-modal machine learning algorithm with pretreatment clinical, ultrasound, and tomosynthesis radiomics features to predict response to neoadjuvant breast cancer treatment. • Compared with the clinical algorithm, the AUC of this integrative algorithm is significantly higher. • Used prior to the initiative of therapy, our algorithm can identify patients who will experience pathologic complete response following neoadjuvant therapy with a high negative predictive value." @default.
- W4386725532 created "2023-09-15" @default.
- W4386725532 creator A5006044762 @default.
- W4386725532 creator A5037605712 @default.
- W4386725532 creator A5038685423 @default.
- W4386725532 creator A5047800419 @default.
- W4386725532 creator A5066966326 @default.
- W4386725532 creator A5067246293 @default.
- W4386725532 creator A5075656855 @default.
- W4386725532 creator A5079710426 @default.
- W4386725532 creator A5081505570 @default.
- W4386725532 creator A5085380597 @default.
- W4386725532 date "2023-09-14" @default.
- W4386725532 modified "2023-09-26" @default.
- W4386725532 title "Can multi-modal radiomics using pretreatment ultrasound and tomosynthesis predict response to neoadjuvant systemic treatment in breast cancer?" @default.
- W4386725532 cites W1970706614 @default.
- W4386725532 cites W2013115914 @default.
- W4386725532 cites W2070595900 @default.
- W4386725532 cites W2078271269 @default.
- W4386725532 cites W2084396669 @default.
- W4386725532 cites W2116449096 @default.
- W4386725532 cites W2129925362 @default.
- W4386725532 cites W2146272590 @default.
- W4386725532 cites W2339976663 @default.
- W4386725532 cites W2409649574 @default.
- W4386725532 cites W2767128594 @default.
- W4386725532 cites W2891385203 @default.
- W4386725532 cites W2899659781 @default.
- W4386725532 cites W2903193447 @default.
- W4386725532 cites W2921520311 @default.
- W4386725532 cites W2934399013 @default.
- W4386725532 cites W2957606078 @default.
- W4386725532 cites W2988716771 @default.
- W4386725532 cites W2998789541 @default.
- W4386725532 cites W3008603854 @default.
- W4386725532 cites W3010861587 @default.
- W4386725532 cites W3048802680 @default.
- W4386725532 cites W3087393791 @default.
- W4386725532 cites W3122861570 @default.
- W4386725532 cites W3132834592 @default.
- W4386725532 cites W3173455369 @default.
- W4386725532 cites W3176744136 @default.
- W4386725532 cites W3191637475 @default.
- W4386725532 cites W3197479046 @default.
- W4386725532 cites W3201089330 @default.
- W4386725532 cites W3206781867 @default.
- W4386725532 cites W3209858644 @default.
- W4386725532 cites W3211240094 @default.
- W4386725532 cites W3211892463 @default.
- W4386725532 cites W3216244104 @default.
- W4386725532 cites W4206941699 @default.
- W4386725532 cites W4210600686 @default.
- W4386725532 cites W4210788280 @default.
- W4386725532 cites W4212770938 @default.
- W4386725532 cites W4221047301 @default.
- W4386725532 cites W4226360201 @default.
- W4386725532 cites W4282841042 @default.
- W4386725532 cites W4283726924 @default.
- W4386725532 cites W4285719527 @default.
- W4386725532 cites W4293089830 @default.
- W4386725532 cites W4302307482 @default.
- W4386725532 cites W4307399943 @default.
- W4386725532 cites W4308364545 @default.
- W4386725532 cites W4328003564 @default.
- W4386725532 doi "https://doi.org/10.1007/s00330-023-10238-6" @default.
- W4386725532 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37707548" @default.
- W4386725532 hasPublicationYear "2023" @default.
- W4386725532 type Work @default.
- W4386725532 citedByCount "0" @default.
- W4386725532 crossrefType "journal-article" @default.
- W4386725532 hasAuthorship W4386725532A5006044762 @default.
- W4386725532 hasAuthorship W4386725532A5037605712 @default.
- W4386725532 hasAuthorship W4386725532A5038685423 @default.
- W4386725532 hasAuthorship W4386725532A5047800419 @default.
- W4386725532 hasAuthorship W4386725532A5066966326 @default.
- W4386725532 hasAuthorship W4386725532A5067246293 @default.
- W4386725532 hasAuthorship W4386725532A5075656855 @default.
- W4386725532 hasAuthorship W4386725532A5079710426 @default.
- W4386725532 hasAuthorship W4386725532A5081505570 @default.
- W4386725532 hasAuthorship W4386725532A5085380597 @default.
- W4386725532 hasBestOaLocation W43867255321 @default.
- W4386725532 hasConcept C121608353 @default.
- W4386725532 hasConcept C126322002 @default.
- W4386725532 hasConcept C126838900 @default.
- W4386725532 hasConcept C143753070 @default.
- W4386725532 hasConcept C147454874 @default.
- W4386725532 hasConcept C2778559731 @default.
- W4386725532 hasConcept C2780472235 @default.
- W4386725532 hasConcept C530470458 @default.
- W4386725532 hasConcept C71924100 @default.
- W4386725532 hasConceptScore W4386725532C121608353 @default.
- W4386725532 hasConceptScore W4386725532C126322002 @default.
- W4386725532 hasConceptScore W4386725532C126838900 @default.
- W4386725532 hasConceptScore W4386725532C143753070 @default.
- W4386725532 hasConceptScore W4386725532C147454874 @default.
- W4386725532 hasConceptScore W4386725532C2778559731 @default.
- W4386725532 hasConceptScore W4386725532C2780472235 @default.
- W4386725532 hasConceptScore W4386725532C530470458 @default.
- W4386725532 hasConceptScore W4386725532C71924100 @default.
- W4386725532 hasFunder F4320330130 @default.