Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386735541> ?p ?o ?g. }
- W4386735541 abstract "The potential of large language models in medicine for education and decision-making purposes has been demonstrated as they have achieved decent scores on medical exams such as the United States Medical Licensing Exam (USMLE) and the MedQA exam. This work aims to evaluate the performance of ChatGPT-4 in the specialized field of radiation oncology.The 38th American College of Radiology (ACR) radiation oncology in-training (TXIT) exam and the 2022 Red Journal Gray Zone cases are used to benchmark the performance of ChatGPT-4. The TXIT exam contains 300 questions covering various topics of radiation oncology. The 2022 Gray Zone collection contains 15 complex clinical cases.For the TXIT exam, ChatGPT-3.5 and ChatGPT-4 have achieved the scores of 62.05% and 78.77%, respectively, highlighting the advantage of the latest ChatGPT-4 model. Based on the TXIT exam, ChatGPT-4's strong and weak areas in radiation oncology are identified to some extent. Specifically, ChatGPT-4 demonstrates better knowledge of statistics, CNS & eye, pediatrics, biology, and physics than knowledge of bone & soft tissue and gynecology, as per the ACR knowledge domain. Regarding clinical care paths, ChatGPT-4 performs better in diagnosis, prognosis, and toxicity than brachytherapy and dosimetry. It lacks proficiency in in-depth details of clinical trials. For the Gray Zone cases, ChatGPT-4 is able to suggest a personalized treatment approach to each case with high correctness and comprehensiveness. Importantly, it provides novel treatment aspects for many cases, which are not suggested by any human experts.Both evaluations demonstrate the potential of ChatGPT-4 in medical education for the general public and cancer patients, as well as the potential to aid clinical decision-making, while acknowledging its limitations in certain domains. Owing to the risk of hallucinations, it is essential to verify the content generated by models such as ChatGPT for accuracy." @default.
- W4386735541 created "2023-09-15" @default.
- W4386735541 creator A5005230207 @default.
- W4386735541 creator A5010448955 @default.
- W4386735541 creator A5011437805 @default.
- W4386735541 creator A5020689634 @default.
- W4386735541 creator A5027231637 @default.
- W4386735541 creator A5030709807 @default.
- W4386735541 creator A5032251994 @default.
- W4386735541 creator A5032499810 @default.
- W4386735541 creator A5057857977 @default.
- W4386735541 creator A5067659188 @default.
- W4386735541 creator A5067749722 @default.
- W4386735541 creator A5073209088 @default.
- W4386735541 creator A5078178214 @default.
- W4386735541 creator A5079727934 @default.
- W4386735541 creator A5085594193 @default.
- W4386735541 date "2023-09-14" @default.
- W4386735541 modified "2023-10-05" @default.
- W4386735541 title "Benchmarking ChatGPT-4 on a radiation oncology in-training exam and Red Journal Gray Zone cases: potentials and challenges for ai-assisted medical education and decision making in radiation oncology" @default.
- W4386735541 cites W2222645822 @default.
- W4386735541 cites W2301358467 @default.
- W4386735541 cites W2523123787 @default.
- W4386735541 cites W2560067832 @default.
- W4386735541 cites W2586403573 @default.
- W4386735541 cites W2797145364 @default.
- W4386735541 cites W2898197178 @default.
- W4386735541 cites W2911489562 @default.
- W4386735541 cites W2947548740 @default.
- W4386735541 cites W2963015093 @default.
- W4386735541 cites W3013251573 @default.
- W4386735541 cites W3102799385 @default.
- W4386735541 cites W3217798115 @default.
- W4386735541 cites W4210658879 @default.
- W4386735541 cites W4223614831 @default.
- W4386735541 cites W4225130527 @default.
- W4386735541 cites W4226090335 @default.
- W4386735541 cites W4280543999 @default.
- W4386735541 cites W4283703346 @default.
- W4386735541 cites W4304893760 @default.
- W4386735541 cites W4309029809 @default.
- W4386735541 cites W4319662928 @default.
- W4386735541 cites W4321109296 @default.
- W4386735541 cites W4324028585 @default.
- W4386735541 cites W4353015365 @default.
- W4386735541 cites W4362721801 @default.
- W4386735541 cites W4366769280 @default.
- W4386735541 cites W4380887490 @default.
- W4386735541 cites W4381930847 @default.
- W4386735541 cites W4384071683 @default.
- W4386735541 cites W4384484700 @default.
- W4386735541 doi "https://doi.org/10.3389/fonc.2023.1265024" @default.
- W4386735541 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37790756" @default.
- W4386735541 hasPublicationYear "2023" @default.
- W4386735541 type Work @default.
- W4386735541 citedByCount "0" @default.
- W4386735541 crossrefType "journal-article" @default.
- W4386735541 hasAuthorship W4386735541A5005230207 @default.
- W4386735541 hasAuthorship W4386735541A5010448955 @default.
- W4386735541 hasAuthorship W4386735541A5011437805 @default.
- W4386735541 hasAuthorship W4386735541A5020689634 @default.
- W4386735541 hasAuthorship W4386735541A5027231637 @default.
- W4386735541 hasAuthorship W4386735541A5030709807 @default.
- W4386735541 hasAuthorship W4386735541A5032251994 @default.
- W4386735541 hasAuthorship W4386735541A5032499810 @default.
- W4386735541 hasAuthorship W4386735541A5057857977 @default.
- W4386735541 hasAuthorship W4386735541A5067659188 @default.
- W4386735541 hasAuthorship W4386735541A5067749722 @default.
- W4386735541 hasAuthorship W4386735541A5073209088 @default.
- W4386735541 hasAuthorship W4386735541A5078178214 @default.
- W4386735541 hasAuthorship W4386735541A5079727934 @default.
- W4386735541 hasAuthorship W4386735541A5085594193 @default.
- W4386735541 hasBestOaLocation W43867355411 @default.
- W4386735541 hasConcept C126322002 @default.
- W4386735541 hasConcept C126838900 @default.
- W4386735541 hasConcept C143998085 @default.
- W4386735541 hasConcept C144133560 @default.
- W4386735541 hasConcept C162853370 @default.
- W4386735541 hasConcept C166275286 @default.
- W4386735541 hasConcept C19527891 @default.
- W4386735541 hasConcept C2992330918 @default.
- W4386735541 hasConcept C2992520072 @default.
- W4386735541 hasConcept C509550671 @default.
- W4386735541 hasConcept C509974204 @default.
- W4386735541 hasConcept C71924100 @default.
- W4386735541 hasConcept C86251818 @default.
- W4386735541 hasConceptScore W4386735541C126322002 @default.
- W4386735541 hasConceptScore W4386735541C126838900 @default.
- W4386735541 hasConceptScore W4386735541C143998085 @default.
- W4386735541 hasConceptScore W4386735541C144133560 @default.
- W4386735541 hasConceptScore W4386735541C162853370 @default.
- W4386735541 hasConceptScore W4386735541C166275286 @default.
- W4386735541 hasConceptScore W4386735541C19527891 @default.
- W4386735541 hasConceptScore W4386735541C2992330918 @default.
- W4386735541 hasConceptScore W4386735541C2992520072 @default.
- W4386735541 hasConceptScore W4386735541C509550671 @default.
- W4386735541 hasConceptScore W4386735541C509974204 @default.
- W4386735541 hasConceptScore W4386735541C71924100 @default.
- W4386735541 hasConceptScore W4386735541C86251818 @default.
- W4386735541 hasLocation W43867355411 @default.