Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386736088> ?p ?o ?g. }
- W4386736088 endingPage "14935" @default.
- W4386736088 startingPage "14922" @default.
- W4386736088 abstract "Sustainable liquid fuel hydrocarbons possess higher energy densities compared to other renewable technologies and thus play a role in the decarbonization of the transportation sector, particularly in long-range applications such as aviation, marine, and rail transport. Through thermochemical pathways to produce liquid hydrocarbons from biomass, catalytic hydrotreatment (HT) is employed to remove heteroatoms, especially oxygen, nitrogen, and sulfur, in the presence of hydrogen. This study used and modified the Molecular Transformer (MT) to investigate its applicability in the product prediction of HT reactions with biomass-derived reactants as starting input. Three different approaches to model implementation were investigated: training the model from scratch using all reactions, fine-tuning a pretrained MT model on a limited HT reaction data set, and modifying the MT model to incorporate reaction conditions as new features. The models used both the simplified molecule-input line-entry system and self-referencing embedded string representations. A combination of a manually created data set consisting of HT reactions mined from peer-reviewed literature and a generic chemical reactions data set from the U.S. Patent and Trademark Office (USPTO) were used to assess the various MT models’ feasibility for HT reactions. The results demonstrated that the models could learn and utilize relevant chemical features, catalysts, and reaction conditions to predict the outcome of the HT reactions. The cumulative accuracy of predicting elementary reactions from a test set consisting of HT-relevant compounds using the modified MT models reached more than 70%, a notable improvement from the initial 20% accuracy with the vanilla MT model. This study represents a significant step toward utilizing deep learning to predict HT reactions and provides valuable insights for future advancements in this field." @default.
- W4386736088 created "2023-09-15" @default.
- W4386736088 creator A5007005734 @default.
- W4386736088 creator A5014168343 @default.
- W4386736088 creator A5033633834 @default.
- W4386736088 creator A5038687584 @default.
- W4386736088 creator A5047048362 @default.
- W4386736088 creator A5076680203 @default.
- W4386736088 creator A5092869530 @default.
- W4386736088 creator A5092869531 @default.
- W4386736088 creator A5092869532 @default.
- W4386736088 date "2023-09-14" @default.
- W4386736088 modified "2023-10-16" @default.
- W4386736088 title "HT Model: Using the Molecular Transformer for Predicting Hydrotreating Reactions" @default.
- W4386736088 cites W1971849220 @default.
- W4386736088 cites W1973166400 @default.
- W4386736088 cites W1975147762 @default.
- W4386736088 cites W1980394106 @default.
- W4386736088 cites W2101105183 @default.
- W4386736088 cites W2138039002 @default.
- W4386736088 cites W2509830043 @default.
- W4386736088 cites W2769423117 @default.
- W4386736088 cites W2794876877 @default.
- W4386736088 cites W2888974685 @default.
- W4386736088 cites W2903262661 @default.
- W4386736088 cites W2963212250 @default.
- W4386736088 cites W2963532001 @default.
- W4386736088 cites W2969507301 @default.
- W4386736088 cites W3045928028 @default.
- W4386736088 cites W3082081167 @default.
- W4386736088 cites W3084512591 @default.
- W4386736088 cites W3088999551 @default.
- W4386736088 cites W3094771832 @default.
- W4386736088 cites W3103092523 @default.
- W4386736088 cites W3122454421 @default.
- W4386736088 cites W3123901912 @default.
- W4386736088 cites W3132956480 @default.
- W4386736088 cites W4205328756 @default.
- W4386736088 cites W4246869505 @default.
- W4386736088 cites W4306179830 @default.
- W4386736088 doi "https://doi.org/10.1021/acs.energyfuels.3c02224" @default.
- W4386736088 hasPublicationYear "2023" @default.
- W4386736088 type Work @default.
- W4386736088 citedByCount "0" @default.
- W4386736088 crossrefType "journal-article" @default.
- W4386736088 hasAuthorship W4386736088A5007005734 @default.
- W4386736088 hasAuthorship W4386736088A5014168343 @default.
- W4386736088 hasAuthorship W4386736088A5033633834 @default.
- W4386736088 hasAuthorship W4386736088A5038687584 @default.
- W4386736088 hasAuthorship W4386736088A5047048362 @default.
- W4386736088 hasAuthorship W4386736088A5076680203 @default.
- W4386736088 hasAuthorship W4386736088A5092869530 @default.
- W4386736088 hasAuthorship W4386736088A5092869531 @default.
- W4386736088 hasAuthorship W4386736088A5092869532 @default.
- W4386736088 hasConcept C119599485 @default.
- W4386736088 hasConcept C127413603 @default.
- W4386736088 hasConcept C161790260 @default.
- W4386736088 hasConcept C165801399 @default.
- W4386736088 hasConcept C178790620 @default.
- W4386736088 hasConcept C183696295 @default.
- W4386736088 hasConcept C185592680 @default.
- W4386736088 hasConcept C186060115 @default.
- W4386736088 hasConcept C197129369 @default.
- W4386736088 hasConcept C20950531 @default.
- W4386736088 hasConcept C21880701 @default.
- W4386736088 hasConcept C2780378348 @default.
- W4386736088 hasConcept C41008148 @default.
- W4386736088 hasConcept C518881349 @default.
- W4386736088 hasConcept C66322947 @default.
- W4386736088 hasConcept C86803240 @default.
- W4386736088 hasConceptScore W4386736088C119599485 @default.
- W4386736088 hasConceptScore W4386736088C127413603 @default.
- W4386736088 hasConceptScore W4386736088C161790260 @default.
- W4386736088 hasConceptScore W4386736088C165801399 @default.
- W4386736088 hasConceptScore W4386736088C178790620 @default.
- W4386736088 hasConceptScore W4386736088C183696295 @default.
- W4386736088 hasConceptScore W4386736088C185592680 @default.
- W4386736088 hasConceptScore W4386736088C186060115 @default.
- W4386736088 hasConceptScore W4386736088C197129369 @default.
- W4386736088 hasConceptScore W4386736088C20950531 @default.
- W4386736088 hasConceptScore W4386736088C21880701 @default.
- W4386736088 hasConceptScore W4386736088C2780378348 @default.
- W4386736088 hasConceptScore W4386736088C41008148 @default.
- W4386736088 hasConceptScore W4386736088C518881349 @default.
- W4386736088 hasConceptScore W4386736088C66322947 @default.
- W4386736088 hasConceptScore W4386736088C86803240 @default.
- W4386736088 hasFunder F4320337513 @default.
- W4386736088 hasFunder F4320337708 @default.
- W4386736088 hasIssue "19" @default.
- W4386736088 hasLocation W43867360881 @default.
- W4386736088 hasOpenAccess W4386736088 @default.
- W4386736088 hasPrimaryLocation W43867360881 @default.
- W4386736088 hasRelatedWork W1575852573 @default.
- W4386736088 hasRelatedWork W1981478553 @default.
- W4386736088 hasRelatedWork W2012900450 @default.
- W4386736088 hasRelatedWork W2036956123 @default.
- W4386736088 hasRelatedWork W2129720165 @default.
- W4386736088 hasRelatedWork W2156957016 @default.