Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386738797> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4386738797 endingPage "012059" @default.
- W4386738797 startingPage "012059" @default.
- W4386738797 abstract "Abstract Music genre classification focus on efficiently finding expected music with a similar genre through numerous melodies, which could better satisfy the tastes and expectations of the users when listening to music. This paper proposes a new method to classify different kinds of music with Artificial Neural networks (ANN) and Convolutional Neural Networks (CNNs). First, Mel Frequency Cepstral Coefficients (MFCC) are used to preprocess the Mel-frequency cepstrum (MFC). Then, we upgrade Anupam’s CNN model. Since the extracted features only by MFC are not suitable for CNN to learn as a small dataset like this. Multiple features are then exacted for each audio file. The two most correlated features on the datasets are adopted as the input of an ANN. To verify the proposed method’s effectiveness, we compare our method with other state-of-the-art methods on the GTZAN dataset. The experimental results show that we can get higher accuracy compared to Anupam. If using only one MFCC feature, Conv-Conv-Pool, a sub-structure that we add two convolutional layers before each max pooling layer, performs better than Conv-Pool, and Conv-Pool performs better than ANN. However, by concatenating another correlated feature, spectral centroid means, which is a measure used in digital signal processing to characterize a spectrum, a simple ANN can have much higher accuracy than the one utilizing only a single MFCC feature with an accuracy of about 94.1%." @default.
- W4386738797 created "2023-09-15" @default.
- W4386738797 creator A5004144743 @default.
- W4386738797 creator A5008437735 @default.
- W4386738797 creator A5052226015 @default.
- W4386738797 creator A5091520888 @default.
- W4386738797 date "2023-09-01" @default.
- W4386738797 modified "2023-09-26" @default.
- W4386738797 title "Music classification with convolutional and artificial neural network" @default.
- W4386738797 cites W3023420897 @default.
- W4386738797 doi "https://doi.org/10.1088/1742-6596/2580/1/012059" @default.
- W4386738797 hasPublicationYear "2023" @default.
- W4386738797 type Work @default.
- W4386738797 citedByCount "0" @default.
- W4386738797 crossrefType "journal-article" @default.
- W4386738797 hasAuthorship W4386738797A5004144743 @default.
- W4386738797 hasAuthorship W4386738797A5008437735 @default.
- W4386738797 hasAuthorship W4386738797A5052226015 @default.
- W4386738797 hasAuthorship W4386738797A5091520888 @default.
- W4386738797 hasBestOaLocation W43867387971 @default.
- W4386738797 hasConcept C120665830 @default.
- W4386738797 hasConcept C121332964 @default.
- W4386738797 hasConcept C138885662 @default.
- W4386738797 hasConcept C151989614 @default.
- W4386738797 hasConcept C153180895 @default.
- W4386738797 hasConcept C154945302 @default.
- W4386738797 hasConcept C192209626 @default.
- W4386738797 hasConcept C2776401178 @default.
- W4386738797 hasConcept C2780719617 @default.
- W4386738797 hasConcept C28490314 @default.
- W4386738797 hasConcept C41008148 @default.
- W4386738797 hasConcept C41895202 @default.
- W4386738797 hasConcept C50644808 @default.
- W4386738797 hasConcept C52622490 @default.
- W4386738797 hasConcept C70437156 @default.
- W4386738797 hasConcept C81363708 @default.
- W4386738797 hasConceptScore W4386738797C120665830 @default.
- W4386738797 hasConceptScore W4386738797C121332964 @default.
- W4386738797 hasConceptScore W4386738797C138885662 @default.
- W4386738797 hasConceptScore W4386738797C151989614 @default.
- W4386738797 hasConceptScore W4386738797C153180895 @default.
- W4386738797 hasConceptScore W4386738797C154945302 @default.
- W4386738797 hasConceptScore W4386738797C192209626 @default.
- W4386738797 hasConceptScore W4386738797C2776401178 @default.
- W4386738797 hasConceptScore W4386738797C2780719617 @default.
- W4386738797 hasConceptScore W4386738797C28490314 @default.
- W4386738797 hasConceptScore W4386738797C41008148 @default.
- W4386738797 hasConceptScore W4386738797C41895202 @default.
- W4386738797 hasConceptScore W4386738797C50644808 @default.
- W4386738797 hasConceptScore W4386738797C52622490 @default.
- W4386738797 hasConceptScore W4386738797C70437156 @default.
- W4386738797 hasConceptScore W4386738797C81363708 @default.
- W4386738797 hasIssue "1" @default.
- W4386738797 hasLocation W43867387971 @default.
- W4386738797 hasOpenAccess W4386738797 @default.
- W4386738797 hasPrimaryLocation W43867387971 @default.
- W4386738797 hasRelatedWork W2146076056 @default.
- W4386738797 hasRelatedWork W2291847203 @default.
- W4386738797 hasRelatedWork W2319888919 @default.
- W4386738797 hasRelatedWork W2424871898 @default.
- W4386738797 hasRelatedWork W2517027266 @default.
- W4386738797 hasRelatedWork W2546942002 @default.
- W4386738797 hasRelatedWork W2756241593 @default.
- W4386738797 hasRelatedWork W2811390910 @default.
- W4386738797 hasRelatedWork W3004532561 @default.
- W4386738797 hasRelatedWork W4313229418 @default.
- W4386738797 hasVolume "2580" @default.
- W4386738797 isParatext "false" @default.
- W4386738797 isRetracted "false" @default.
- W4386738797 workType "article" @default.