Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386742661> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4386742661 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Deep learning (DL) methods have recently garnered attention from the climate change community, as an innovative approach for downscaling climate variables from Earth System and Global Climate Models (ESGCMs) with horizontal resolutions still too coarse to represent regional-to-local-scale phenomena. In the context of the Coupled Model Intercomparison Project phase 6 (CMIP6), ESGCMs simulations were conducted for the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC), at resolutions ranging from 0.70º to 3.75º. Here, four Convolutional Neural Network (CNN) architectures were evaluated for their ability to downscale, to a resolution of 0.1º, seven CMIP6 ESGCMs over the Iberian Peninsula - a known climate change hotspot, due to its increased vulnerability to projected future warming and drying conditions. The study is divided into three stages: (1) evaluating the performance of the four CNN architectures in predicting mean, minimum, and maximum temperatures, as well as daily precipitation, trained using ERA5 data, and compared with the Iberia01 observational dataset; (2) downscaling the CMIP6 ESGCMs using the trained CNN architectures and further evaluating the ensemble against Iberia01; and (3) constructing a multi-model ensemble of CNN-based downscaled projections for temperature and precipitation over the Iberian Peninsula at 0.1º resolution throughout the 21st century, under four Shared Socioeconomic Pathway (SSP) scenarios. Upon validation and satisfactory performance evaluation, the DL downscaled projections demonstrate overall agreement with the CMIP6 ESGCM ensemble in terms of temperature and precipitation projections. Moreover, the advantages of using a high-resolution DL downscaled ensemble of ESGCM climate projections are evident, offering substantial added value in representing regional climate change over Iberia. Notably, a clear warming trend is observed, consistent with previous studies in this area, with projected temperature increases ranging from 2 ºC to 6 ºC depending on the climate scenario. Regarding precipitation, robust projected decreases are observed in western and southwestern Iberia, particularly after 2040. These results may offer a new tool for providing regional climate change information for adaptation strategies based on CMIP6 ESGCMs prior to the next phase of the European branch from the Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX) experiments." @default.
- W4386742661 created "2023-09-15" @default.
- W4386742661 creator A5070053262 @default.
- W4386742661 date "2023-09-14" @default.
- W4386742661 modified "2023-09-26" @default.
- W4386742661 title "Reply on CEC1" @default.
- W4386742661 doi "https://doi.org/10.5194/gmd-2023-136-ac2" @default.
- W4386742661 hasPublicationYear "2023" @default.
- W4386742661 type Work @default.
- W4386742661 citedByCount "0" @default.
- W4386742661 crossrefType "peer-review" @default.
- W4386742661 hasAuthorship W4386742661A5070053262 @default.
- W4386742661 hasBestOaLocation W43867426611 @default.
- W4386742661 hasConcept C107054158 @default.
- W4386742661 hasConcept C111368507 @default.
- W4386742661 hasConcept C119857082 @default.
- W4386742661 hasConcept C127313418 @default.
- W4386742661 hasConcept C132651083 @default.
- W4386742661 hasConcept C153294291 @default.
- W4386742661 hasConcept C166957645 @default.
- W4386742661 hasConcept C168754636 @default.
- W4386742661 hasConcept C205649164 @default.
- W4386742661 hasConcept C24552861 @default.
- W4386742661 hasConcept C25022447 @default.
- W4386742661 hasConcept C2779343474 @default.
- W4386742661 hasConcept C39432304 @default.
- W4386742661 hasConcept C41008148 @default.
- W4386742661 hasConcept C41156917 @default.
- W4386742661 hasConcept C42683663 @default.
- W4386742661 hasConcept C49204034 @default.
- W4386742661 hasConcept C81363708 @default.
- W4386742661 hasConceptScore W4386742661C107054158 @default.
- W4386742661 hasConceptScore W4386742661C111368507 @default.
- W4386742661 hasConceptScore W4386742661C119857082 @default.
- W4386742661 hasConceptScore W4386742661C127313418 @default.
- W4386742661 hasConceptScore W4386742661C132651083 @default.
- W4386742661 hasConceptScore W4386742661C153294291 @default.
- W4386742661 hasConceptScore W4386742661C166957645 @default.
- W4386742661 hasConceptScore W4386742661C168754636 @default.
- W4386742661 hasConceptScore W4386742661C205649164 @default.
- W4386742661 hasConceptScore W4386742661C24552861 @default.
- W4386742661 hasConceptScore W4386742661C25022447 @default.
- W4386742661 hasConceptScore W4386742661C2779343474 @default.
- W4386742661 hasConceptScore W4386742661C39432304 @default.
- W4386742661 hasConceptScore W4386742661C41008148 @default.
- W4386742661 hasConceptScore W4386742661C41156917 @default.
- W4386742661 hasConceptScore W4386742661C42683663 @default.
- W4386742661 hasConceptScore W4386742661C49204034 @default.
- W4386742661 hasConceptScore W4386742661C81363708 @default.
- W4386742661 hasLocation W43867426611 @default.
- W4386742661 hasOpenAccess W4386742661 @default.
- W4386742661 hasPrimaryLocation W43867426611 @default.
- W4386742661 hasRelatedWork W2067769029 @default.
- W4386742661 hasRelatedWork W2359836481 @default.
- W4386742661 hasRelatedWork W2769376423 @default.
- W4386742661 hasRelatedWork W3113703861 @default.
- W4386742661 hasRelatedWork W3154121679 @default.
- W4386742661 hasRelatedWork W3164919201 @default.
- W4386742661 hasRelatedWork W3200829975 @default.
- W4386742661 hasRelatedWork W4281261061 @default.
- W4386742661 hasRelatedWork W4284886752 @default.
- W4386742661 hasRelatedWork W4295559978 @default.
- W4386742661 isParatext "false" @default.
- W4386742661 isRetracted "false" @default.
- W4386742661 workType "peer-review" @default.