Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386748614> ?p ?o ?g. }
- W4386748614 endingPage "310" @default.
- W4386748614 startingPage "310" @default.
- W4386748614 abstract "The trend of the next generation of the internet has already been scrutinized by top analytics enterprises. According to Gartner investigations, it is predicted that, by 2024, 75% of the global population will have their personal data covered under privacy regulations. This alarming statistic necessitates the orchestration of several security components to address the enormous challenges posed by federated and distributed learning environments. Federated learning (FL) is a promising technique that allows multiple parties to collaboratively train a model without sharing their data. However, even though FL is seen as a privacy-preserving distributed machine learning method, recent works have demonstrated that FL is vulnerable to some privacy attacks. Homomorphic encryption (HE) and differential privacy (DP) are two promising techniques that can be used to address these privacy concerns. HE allows secure computations on encrypted data, while DP provides strong privacy guarantees by adding noise to the data. This paper first presents consistent attacks on privacy in federated learning and then provides an overview of HE and DP techniques for secure federated learning in next-generation internet applications. It discusses the strengths and weaknesses of these techniques in different settings as described in the literature, with a particular focus on the trade-off between privacy and convergence, as well as the computation overheads involved. The objective of this paper is to analyze the challenges associated with each technique and identify potential opportunities and solutions for designing a more robust, privacy-preserving federated learning framework." @default.
- W4386748614 created "2023-09-15" @default.
- W4386748614 creator A5007882938 @default.
- W4386748614 creator A5064146515 @default.
- W4386748614 creator A5080434649 @default.
- W4386748614 creator A5084106026 @default.
- W4386748614 date "2023-09-13" @default.
- W4386748614 modified "2023-10-18" @default.
- W4386748614 title "Exploring Homomorphic Encryption and Differential Privacy Techniques towards Secure Federated Learning Paradigm" @default.
- W4386748614 cites W2031533839 @default.
- W4386748614 cites W2051267297 @default.
- W4386748614 cites W2473418344 @default.
- W4386748614 cites W2535690855 @default.
- W4386748614 cites W2591882872 @default.
- W4386748614 cites W2897830718 @default.
- W4386748614 cites W2930926105 @default.
- W4386748614 cites W2962835266 @default.
- W4386748614 cites W2963378725 @default.
- W4386748614 cites W2963456518 @default.
- W4386748614 cites W2964162474 @default.
- W4386748614 cites W2984242138 @default.
- W4386748614 cites W2995191368 @default.
- W4386748614 cites W2995221956 @default.
- W4386748614 cites W3014538993 @default.
- W4386748614 cites W3015636663 @default.
- W4386748614 cites W3023244064 @default.
- W4386748614 cites W3031450565 @default.
- W4386748614 cites W3033511014 @default.
- W4386748614 cites W3043758338 @default.
- W4386748614 cites W3045720734 @default.
- W4386748614 cites W3090107331 @default.
- W4386748614 cites W3091476023 @default.
- W4386748614 cites W3093809760 @default.
- W4386748614 cites W3095212288 @default.
- W4386748614 cites W3102891118 @default.
- W4386748614 cites W3109695251 @default.
- W4386748614 cites W3140753276 @default.
- W4386748614 cites W3175192640 @default.
- W4386748614 cites W3180608480 @default.
- W4386748614 cites W3192324887 @default.
- W4386748614 cites W3194761092 @default.
- W4386748614 cites W3197292945 @default.
- W4386748614 cites W3209696639 @default.
- W4386748614 cites W3213807399 @default.
- W4386748614 cites W3215916155 @default.
- W4386748614 cites W4200419653 @default.
- W4386748614 cites W4205238976 @default.
- W4386748614 cites W4206320562 @default.
- W4386748614 cites W4207073300 @default.
- W4386748614 cites W4210503530 @default.
- W4386748614 cites W4210630464 @default.
- W4386748614 cites W4285751657 @default.
- W4386748614 cites W4293211839 @default.
- W4386748614 cites W4295806247 @default.
- W4386748614 cites W4312408731 @default.
- W4386748614 cites W4324066858 @default.
- W4386748614 cites W4376138904 @default.
- W4386748614 cites W4385636378 @default.
- W4386748614 doi "https://doi.org/10.3390/fi15090310" @default.
- W4386748614 hasPublicationYear "2023" @default.
- W4386748614 type Work @default.
- W4386748614 citedByCount "0" @default.
- W4386748614 crossrefType "journal-article" @default.
- W4386748614 hasAuthorship W4386748614A5007882938 @default.
- W4386748614 hasAuthorship W4386748614A5064146515 @default.
- W4386748614 hasAuthorship W4386748614A5080434649 @default.
- W4386748614 hasAuthorship W4386748614A5084106026 @default.
- W4386748614 hasBestOaLocation W43867486141 @default.
- W4386748614 hasConcept C123201435 @default.
- W4386748614 hasConcept C124101348 @default.
- W4386748614 hasConcept C142362112 @default.
- W4386748614 hasConcept C148730421 @default.
- W4386748614 hasConcept C153349607 @default.
- W4386748614 hasConcept C158338273 @default.
- W4386748614 hasConcept C193934123 @default.
- W4386748614 hasConcept C199168358 @default.
- W4386748614 hasConcept C23130292 @default.
- W4386748614 hasConcept C2522767166 @default.
- W4386748614 hasConcept C38652104 @default.
- W4386748614 hasConcept C41008148 @default.
- W4386748614 hasConcept C558565934 @default.
- W4386748614 hasConceptScore W4386748614C123201435 @default.
- W4386748614 hasConceptScore W4386748614C124101348 @default.
- W4386748614 hasConceptScore W4386748614C142362112 @default.
- W4386748614 hasConceptScore W4386748614C148730421 @default.
- W4386748614 hasConceptScore W4386748614C153349607 @default.
- W4386748614 hasConceptScore W4386748614C158338273 @default.
- W4386748614 hasConceptScore W4386748614C193934123 @default.
- W4386748614 hasConceptScore W4386748614C199168358 @default.
- W4386748614 hasConceptScore W4386748614C23130292 @default.
- W4386748614 hasConceptScore W4386748614C2522767166 @default.
- W4386748614 hasConceptScore W4386748614C38652104 @default.
- W4386748614 hasConceptScore W4386748614C41008148 @default.
- W4386748614 hasConceptScore W4386748614C558565934 @default.
- W4386748614 hasIssue "9" @default.
- W4386748614 hasLocation W43867486141 @default.
- W4386748614 hasLocation W43867486142 @default.
- W4386748614 hasOpenAccess W4386748614 @default.