Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386750802> ?p ?o ?g. }
- W4386750802 endingPage "21" @default.
- W4386750802 startingPage "1" @default.
- W4386750802 abstract "AbstractThe Yang–Baxter–like matrix equation plays an important role in quantum group theory, knot theory and braid groups, which has received great attention from physicists and mathematicians. A difficult and important open problem is to find all the solutions of the Yang–Baxter–like matrix equation. As a matter of fact, it is difficult to find all of the solutions even when the coefficient matrix is a 3×3 matrix. To the best of our knowledge, when the coefficient matrix is a 3×3 diagonalizable complex matrix with three distinct nonzero eigenvalues, finding all the solutions of the Yang–Baxter–like matrix equation is still an open problem. In order to fill-in this gap, we first present a sufficient and necessary condition for the commuting solutions of the Yang–Baxter–like matrix equation, and give all the commuting solutions of the matrix equation. Second, with the help of a simplified matrix equation, we derive all the non–commuting solutions of the Yang–Baxter–like matrix equation by discussing whether the off–diagonal elements of the solutions are zero or not.Keywords: Yang–Baxter–like matrix equationYang–Baxter equationcommuting solutionsnon–commuting solutionsdiagonalizable matrixAMS subject classifications: 65F4565F1565F10 AcknowledgmentsWe would like to express our sincere thanks to the referees for their insightful comments and suggestions that greatly improved the representation of this paper.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work is supported by the National Natural Science Foundation of China [grant number 12271518], the Fujian Natural Science Foundation [grant number 2023J01354], the Key Research and Development Project of Xuzhou Natural Science Foundation [grant number KC22288], and the Open Project of Key Laboratory of Data Science and Intelligence Education of the Ministry of Education [grant number DSIE202203]." @default.
- W4386750802 created "2023-09-15" @default.
- W4386750802 creator A5012637949 @default.
- W4386750802 creator A5036771793 @default.
- W4386750802 creator A5085365838 @default.
- W4386750802 date "2023-09-13" @default.
- W4386750802 modified "2023-09-26" @default.
- W4386750802 title "Solutions of the Yang–Baxter–like matrix equation with 3×3 diagonalizable coefficient matrix" @default.
- W4386750802 cites W1409271290 @default.
- W4386750802 cites W1539837196 @default.
- W4386750802 cites W1964308881 @default.
- W4386750802 cites W1966098728 @default.
- W4386750802 cites W1985815255 @default.
- W4386750802 cites W1997645115 @default.
- W4386750802 cites W1998293761 @default.
- W4386750802 cites W2045201354 @default.
- W4386750802 cites W2052372389 @default.
- W4386750802 cites W2135745986 @default.
- W4386750802 cites W2312568246 @default.
- W4386750802 cites W2315638224 @default.
- W4386750802 cites W2399255271 @default.
- W4386750802 cites W2488036022 @default.
- W4386750802 cites W2501616719 @default.
- W4386750802 cites W2520381942 @default.
- W4386750802 cites W2580412299 @default.
- W4386750802 cites W2591693497 @default.
- W4386750802 cites W2601458522 @default.
- W4386750802 cites W2764059296 @default.
- W4386750802 cites W2779769628 @default.
- W4386750802 cites W2782749001 @default.
- W4386750802 cites W2792705432 @default.
- W4386750802 cites W2957879650 @default.
- W4386750802 cites W2963154383 @default.
- W4386750802 cites W2963359858 @default.
- W4386750802 cites W2963766270 @default.
- W4386750802 cites W2963794531 @default.
- W4386750802 cites W2973007519 @default.
- W4386750802 cites W3004119462 @default.
- W4386750802 cites W3036003491 @default.
- W4386750802 cites W3087944654 @default.
- W4386750802 cites W3122550501 @default.
- W4386750802 cites W3196230171 @default.
- W4386750802 cites W4210722333 @default.
- W4386750802 cites W4255075412 @default.
- W4386750802 cites W4312258136 @default.
- W4386750802 doi "https://doi.org/10.1080/03081087.2023.2257863" @default.
- W4386750802 hasPublicationYear "2023" @default.
- W4386750802 type Work @default.
- W4386750802 citedByCount "0" @default.
- W4386750802 crossrefType "journal-article" @default.
- W4386750802 hasAuthorship W4386750802A5012637949 @default.
- W4386750802 hasAuthorship W4386750802A5036771793 @default.
- W4386750802 hasAuthorship W4386750802A5085365838 @default.
- W4386750802 hasConcept C106487976 @default.
- W4386750802 hasConcept C121332964 @default.
- W4386750802 hasConcept C136119220 @default.
- W4386750802 hasConcept C158693339 @default.
- W4386750802 hasConcept C159985019 @default.
- W4386750802 hasConcept C177858542 @default.
- W4386750802 hasConcept C192562407 @default.
- W4386750802 hasConcept C202444582 @default.
- W4386750802 hasConcept C30072841 @default.
- W4386750802 hasConcept C33923547 @default.
- W4386750802 hasConcept C4263655 @default.
- W4386750802 hasConcept C54848796 @default.
- W4386750802 hasConcept C60866291 @default.
- W4386750802 hasConcept C62520636 @default.
- W4386750802 hasConcept C69044650 @default.
- W4386750802 hasConcept C84114770 @default.
- W4386750802 hasConcept C85817219 @default.
- W4386750802 hasConceptScore W4386750802C106487976 @default.
- W4386750802 hasConceptScore W4386750802C121332964 @default.
- W4386750802 hasConceptScore W4386750802C136119220 @default.
- W4386750802 hasConceptScore W4386750802C158693339 @default.
- W4386750802 hasConceptScore W4386750802C159985019 @default.
- W4386750802 hasConceptScore W4386750802C177858542 @default.
- W4386750802 hasConceptScore W4386750802C192562407 @default.
- W4386750802 hasConceptScore W4386750802C202444582 @default.
- W4386750802 hasConceptScore W4386750802C30072841 @default.
- W4386750802 hasConceptScore W4386750802C33923547 @default.
- W4386750802 hasConceptScore W4386750802C4263655 @default.
- W4386750802 hasConceptScore W4386750802C54848796 @default.
- W4386750802 hasConceptScore W4386750802C60866291 @default.
- W4386750802 hasConceptScore W4386750802C62520636 @default.
- W4386750802 hasConceptScore W4386750802C69044650 @default.
- W4386750802 hasConceptScore W4386750802C84114770 @default.
- W4386750802 hasConceptScore W4386750802C85817219 @default.
- W4386750802 hasFunder F4320321001 @default.
- W4386750802 hasFunder F4320321878 @default.
- W4386750802 hasLocation W43867508021 @default.
- W4386750802 hasOpenAccess W4386750802 @default.
- W4386750802 hasPrimaryLocation W43867508021 @default.
- W4386750802 hasRelatedWork W2159671249 @default.
- W4386750802 hasRelatedWork W2166083100 @default.
- W4386750802 hasRelatedWork W2373948857 @default.
- W4386750802 hasRelatedWork W2383015896 @default.
- W4386750802 hasRelatedWork W2384420927 @default.
- W4386750802 hasRelatedWork W2478906071 @default.