Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386753335> ?p ?o ?g. }
- W4386753335 endingPage "107770" @default.
- W4386753335 startingPage "107770" @default.
- W4386753335 abstract "The energy consumption of pumps for water supply accounts for a high proportion of the total global energy consumption. The analysis of the pump's energy consumption factors and the construction of prediction models play a crucial role in carbon emission reductions throughout the water supply process. However, difficulties in accurately constructing input features under complex variables and the scarcity and anomalies of monitoring data during system operation pose great challenges to accurate energy consumption prediction. In order to address this issue, a water pump energy consumption prediction method based on image feature extraction and instance transfer is proposed, using the water pump systems installed in two residential communities as the research objects. Firstly, a novel image-based correlation determination method for feature engineering was introduced and validated on a sufficient dataset. Subsequently, in the context of poor data transfer learning, a water pump energy consumption prediction model, named Two-stage TrAdaBoost.R2 (TSTR), was established by incorporating the image correlation determination method and fine-tuning the model parameters using the particle swarm optimization algorithm to enhance prediction accuracy. The experimental results demonstrated the effectiveness of the proposed image-based correlation determination method, showing a 5.49%–44.33% improvement in the coefficient of variation of root mean square error (CV-RMSE) prediction accuracy compared to classical time-series correlation determination methods. Furthermore, in the poor data transfer prediction experiment, the TSTR-based model achieved 0.90% and 20.22% higher CV-RMSE prediction accuracy compared to two comparative models. These findings confirmed the effectiveness of instance transfer learning methods in poor data scenarios and provided valuable insights for selecting input feature construction methods under complex variables." @default.
- W4386753335 created "2023-09-15" @default.
- W4386753335 creator A5014582849 @default.
- W4386753335 creator A5026072615 @default.
- W4386753335 creator A5026804664 @default.
- W4386753335 creator A5037226725 @default.
- W4386753335 creator A5046695536 @default.
- W4386753335 creator A5050869841 @default.
- W4386753335 creator A5071931173 @default.
- W4386753335 date "2023-11-01" @default.
- W4386753335 modified "2023-10-18" @default.
- W4386753335 title "Predictive model of pump energy consumption based on image feature extraction and instance-based transfer learning" @default.
- W4386753335 cites W1991277158 @default.
- W4386753335 cites W1992226693 @default.
- W4386753335 cites W2012231141 @default.
- W4386753335 cites W2012930025 @default.
- W4386753335 cites W2018093805 @default.
- W4386753335 cites W2027325162 @default.
- W4386753335 cites W2029767187 @default.
- W4386753335 cites W2033275656 @default.
- W4386753335 cites W2035737123 @default.
- W4386753335 cites W2102831150 @default.
- W4386753335 cites W2103018059 @default.
- W4386753335 cites W2129959438 @default.
- W4386753335 cites W2140196823 @default.
- W4386753335 cites W2266544353 @default.
- W4386753335 cites W2327035729 @default.
- W4386753335 cites W2541631431 @default.
- W4386753335 cites W2553807476 @default.
- W4386753335 cites W2604099671 @default.
- W4386753335 cites W2604389850 @default.
- W4386753335 cites W2611387561 @default.
- W4386753335 cites W2754029504 @default.
- W4386753335 cites W2788001476 @default.
- W4386753335 cites W2792071264 @default.
- W4386753335 cites W2896920734 @default.
- W4386753335 cites W2899714726 @default.
- W4386753335 cites W2904965922 @default.
- W4386753335 cites W2980011983 @default.
- W4386753335 cites W3021900882 @default.
- W4386753335 cites W3133181227 @default.
- W4386753335 cites W3185256938 @default.
- W4386753335 cites W3216709008 @default.
- W4386753335 cites W4206023940 @default.
- W4386753335 cites W4281899822 @default.
- W4386753335 cites W4289236186 @default.
- W4386753335 cites W4290990408 @default.
- W4386753335 cites W4309690901 @default.
- W4386753335 cites W4313575986 @default.
- W4386753335 cites W4321180172 @default.
- W4386753335 cites W4323820865 @default.
- W4386753335 doi "https://doi.org/10.1016/j.jobe.2023.107770" @default.
- W4386753335 hasPublicationYear "2023" @default.
- W4386753335 type Work @default.
- W4386753335 citedByCount "0" @default.
- W4386753335 crossrefType "journal-article" @default.
- W4386753335 hasAuthorship W4386753335A5014582849 @default.
- W4386753335 hasAuthorship W4386753335A5026072615 @default.
- W4386753335 hasAuthorship W4386753335A5026804664 @default.
- W4386753335 hasAuthorship W4386753335A5037226725 @default.
- W4386753335 hasAuthorship W4386753335A5046695536 @default.
- W4386753335 hasAuthorship W4386753335A5050869841 @default.
- W4386753335 hasAuthorship W4386753335A5071931173 @default.
- W4386753335 hasConcept C105795698 @default.
- W4386753335 hasConcept C119599485 @default.
- W4386753335 hasConcept C119857082 @default.
- W4386753335 hasConcept C124101348 @default.
- W4386753335 hasConcept C127413603 @default.
- W4386753335 hasConcept C138885662 @default.
- W4386753335 hasConcept C139945424 @default.
- W4386753335 hasConcept C151730666 @default.
- W4386753335 hasConcept C153180895 @default.
- W4386753335 hasConcept C154945302 @default.
- W4386753335 hasConcept C2776401178 @default.
- W4386753335 hasConcept C2779343474 @default.
- W4386753335 hasConcept C2780092901 @default.
- W4386753335 hasConcept C2780165032 @default.
- W4386753335 hasConcept C33923547 @default.
- W4386753335 hasConcept C41008148 @default.
- W4386753335 hasConcept C41895202 @default.
- W4386753335 hasConcept C52622490 @default.
- W4386753335 hasConcept C85617194 @default.
- W4386753335 hasConcept C86803240 @default.
- W4386753335 hasConceptScore W4386753335C105795698 @default.
- W4386753335 hasConceptScore W4386753335C119599485 @default.
- W4386753335 hasConceptScore W4386753335C119857082 @default.
- W4386753335 hasConceptScore W4386753335C124101348 @default.
- W4386753335 hasConceptScore W4386753335C127413603 @default.
- W4386753335 hasConceptScore W4386753335C138885662 @default.
- W4386753335 hasConceptScore W4386753335C139945424 @default.
- W4386753335 hasConceptScore W4386753335C151730666 @default.
- W4386753335 hasConceptScore W4386753335C153180895 @default.
- W4386753335 hasConceptScore W4386753335C154945302 @default.
- W4386753335 hasConceptScore W4386753335C2776401178 @default.
- W4386753335 hasConceptScore W4386753335C2779343474 @default.
- W4386753335 hasConceptScore W4386753335C2780092901 @default.
- W4386753335 hasConceptScore W4386753335C2780165032 @default.
- W4386753335 hasConceptScore W4386753335C33923547 @default.