Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386758211> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4386758211 abstract "The COVID-19 pandemic, which emerged in late 2019, has caused millions of infections and fatalities globally, disrupting various aspects of human society, including socio-economic, political and educational systems. One of the key challenges during the COVID-19 pandemic is accurately predicting the clinical development and outcome of the infected patients. In response, scientists and medical professionals globally have mobilized to develop prognostic strategies such as risk scores, biomarkers, and machine learning models to predict the clinical course and outcome of COVID-19 patients. In this contribution, we deployed a mathematical approach called matrix factorization feature selection (MFFS) to select the most relevant features from the anonymized laboratory biomarkers and demographic data of COVID-19 patients. Based on these features, we developed a model that can assist clinical care by using the deep stacking neural network (DSNN) to predict patients mortality risk. To gauge the performance of our suggested model, we performed a comparative analysis with principal component analysis plus support vector machine, deep learning, and random forest, achieving outstanding performances. The DSNN model outperformed all the other models in terms of area under the curve (96.0%), 1-score (98.1%), recall (98.5%), accuracy (99.0%), precision (97.7%), specificity (97.0%), and maximum probability of correction decision (93.4%). Our model outperforms the clinical predictive models regarding patient mortality risk and classification in the literature. Therefore, we conclude that our robust model can help healthcare professionals to manage COVID-19 patients more effectively. We expect that early prediction of COVID-19 patients and preventive interventions can reduce the mortality risk of patients." @default.
- W4386758211 created "2023-09-16" @default.
- W4386758211 creator A5006197094 @default.
- W4386758211 creator A5015844168 @default.
- W4386758211 creator A5046202286 @default.
- W4386758211 creator A5080347137 @default.
- W4386758211 date "2023-09-15" @default.
- W4386758211 modified "2023-10-01" @default.
- W4386758211 title "EXPRESS: Clinical Predictions of COVID-19 Patients Using Deep Stacking Neural Network" @default.
- W4386758211 doi "https://doi.org/10.1177/10815589231201103" @default.
- W4386758211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37712431" @default.
- W4386758211 hasPublicationYear "2023" @default.
- W4386758211 type Work @default.
- W4386758211 citedByCount "0" @default.
- W4386758211 crossrefType "journal-article" @default.
- W4386758211 hasAuthorship W4386758211A5006197094 @default.
- W4386758211 hasAuthorship W4386758211A5015844168 @default.
- W4386758211 hasAuthorship W4386758211A5046202286 @default.
- W4386758211 hasAuthorship W4386758211A5080347137 @default.
- W4386758211 hasConcept C108583219 @default.
- W4386758211 hasConcept C119857082 @default.
- W4386758211 hasConcept C12267149 @default.
- W4386758211 hasConcept C126322002 @default.
- W4386758211 hasConcept C144237770 @default.
- W4386758211 hasConcept C148220186 @default.
- W4386758211 hasConcept C154945302 @default.
- W4386758211 hasConcept C169258074 @default.
- W4386758211 hasConcept C27438332 @default.
- W4386758211 hasConcept C2779134260 @default.
- W4386758211 hasConcept C3008058167 @default.
- W4386758211 hasConcept C33923547 @default.
- W4386758211 hasConcept C41008148 @default.
- W4386758211 hasConcept C45804977 @default.
- W4386758211 hasConcept C50644808 @default.
- W4386758211 hasConcept C524204448 @default.
- W4386758211 hasConcept C71924100 @default.
- W4386758211 hasConceptScore W4386758211C108583219 @default.
- W4386758211 hasConceptScore W4386758211C119857082 @default.
- W4386758211 hasConceptScore W4386758211C12267149 @default.
- W4386758211 hasConceptScore W4386758211C126322002 @default.
- W4386758211 hasConceptScore W4386758211C144237770 @default.
- W4386758211 hasConceptScore W4386758211C148220186 @default.
- W4386758211 hasConceptScore W4386758211C154945302 @default.
- W4386758211 hasConceptScore W4386758211C169258074 @default.
- W4386758211 hasConceptScore W4386758211C27438332 @default.
- W4386758211 hasConceptScore W4386758211C2779134260 @default.
- W4386758211 hasConceptScore W4386758211C3008058167 @default.
- W4386758211 hasConceptScore W4386758211C33923547 @default.
- W4386758211 hasConceptScore W4386758211C41008148 @default.
- W4386758211 hasConceptScore W4386758211C45804977 @default.
- W4386758211 hasConceptScore W4386758211C50644808 @default.
- W4386758211 hasConceptScore W4386758211C524204448 @default.
- W4386758211 hasConceptScore W4386758211C71924100 @default.
- W4386758211 hasLocation W43867582111 @default.
- W4386758211 hasLocation W43867582112 @default.
- W4386758211 hasOpenAccess W4386758211 @default.
- W4386758211 hasPrimaryLocation W43867582111 @default.
- W4386758211 hasRelatedWork W2968586400 @default.
- W4386758211 hasRelatedWork W3195168932 @default.
- W4386758211 hasRelatedWork W3211546796 @default.
- W4386758211 hasRelatedWork W4210974274 @default.
- W4386758211 hasRelatedWork W4223564025 @default.
- W4386758211 hasRelatedWork W4223943233 @default.
- W4386758211 hasRelatedWork W4281616679 @default.
- W4386758211 hasRelatedWork W4321636153 @default.
- W4386758211 hasRelatedWork W4380075502 @default.
- W4386758211 hasRelatedWork W4383535405 @default.
- W4386758211 isParatext "false" @default.
- W4386758211 isRetracted "false" @default.
- W4386758211 workType "article" @default.