Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386760226> ?p ?o ?g. }
- W4386760226 endingPage "109257" @default.
- W4386760226 startingPage "109257" @default.
- W4386760226 abstract "In low-frequency ultra-wideband (LFW) radar, the reconstruction of high-resolution range profile (HRRP) is an important task. The state-of-the-art compressive sensing (CS) method for HRRP reconstruction based on geometrical theory of diffraction (GTD) requires manual algorithm parameter tuning and is computationally expensive. In this paper, we propose a deep learning-based CS method for LFW radar HRRP reconstruction. We design a neural network architecture, i.e., target enhancement-based FISTA-Net (TEFISTA-Net), by unrolling the fast iterative shrinkage thresholding algorithm (FISTA). A new loss function based on the target-to-background ratio (TBR) is introduced for network training with the target enhancement capability in low signal-to-noise ratio (SNR) scenarios. The algorithm parameters in the traditional CS methods are substituted by network parameters learned from training data, getting rid of manual parameter tuning. In addition, simple convolution operations in our new method lead to lower computational complexity compared with existing methods. Experimental results based on diverse data show that the proposed method leads to higher computational efficiency with similar or better performance in comparison with existing state-of-the-art methods." @default.
- W4386760226 created "2023-09-16" @default.
- W4386760226 creator A5010931773 @default.
- W4386760226 creator A5067322004 @default.
- W4386760226 creator A5074942308 @default.
- W4386760226 creator A5089960389 @default.
- W4386760226 date "2024-01-01" @default.
- W4386760226 modified "2023-09-29" @default.
- W4386760226 title "TEFISTA-Net: a learnable method for high-resolution range profile reconstruction with low-frequency ultra-wideband radar" @default.
- W4386760226 cites W1973817683 @default.
- W4386760226 cites W1992409670 @default.
- W4386760226 cites W2029720993 @default.
- W4386760226 cites W2048428956 @default.
- W4386760226 cites W2049114785 @default.
- W4386760226 cites W2066622786 @default.
- W4386760226 cites W2073926290 @default.
- W4386760226 cites W2082029531 @default.
- W4386760226 cites W2082679899 @default.
- W4386760226 cites W2100556411 @default.
- W4386760226 cites W2101316886 @default.
- W4386760226 cites W2105233799 @default.
- W4386760226 cites W2106765031 @default.
- W4386760226 cites W2107358047 @default.
- W4386760226 cites W2114838992 @default.
- W4386760226 cites W2118052063 @default.
- W4386760226 cites W2122315118 @default.
- W4386760226 cites W2123513765 @default.
- W4386760226 cites W2127411941 @default.
- W4386760226 cites W2139427913 @default.
- W4386760226 cites W2146065092 @default.
- W4386760226 cites W2161035945 @default.
- W4386760226 cites W2164452299 @default.
- W4386760226 cites W2169241381 @default.
- W4386760226 cites W2206749228 @default.
- W4386760226 cites W2263236809 @default.
- W4386760226 cites W2292341521 @default.
- W4386760226 cites W2323822180 @default.
- W4386760226 cites W2500492694 @default.
- W4386760226 cites W2563557684 @default.
- W4386760226 cites W2574456190 @default.
- W4386760226 cites W2588240548 @default.
- W4386760226 cites W2767005708 @default.
- W4386760226 cites W2767912357 @default.
- W4386760226 cites W2789274581 @default.
- W4386760226 cites W2884367402 @default.
- W4386760226 cites W2895550165 @default.
- W4386760226 cites W2902719825 @default.
- W4386760226 cites W2909390529 @default.
- W4386760226 cites W2919115771 @default.
- W4386760226 cites W3010037955 @default.
- W4386760226 cites W3040246166 @default.
- W4386760226 cites W3045332022 @default.
- W4386760226 cites W3047633627 @default.
- W4386760226 cites W3115447952 @default.
- W4386760226 cites W3122775479 @default.
- W4386760226 cites W3124596402 @default.
- W4386760226 cites W3133902371 @default.
- W4386760226 cites W3134549723 @default.
- W4386760226 cites W3204217114 @default.
- W4386760226 cites W4250955649 @default.
- W4386760226 cites W4372266966 @default.
- W4386760226 doi "https://doi.org/10.1016/j.sigpro.2023.109257" @default.
- W4386760226 hasPublicationYear "2024" @default.
- W4386760226 type Work @default.
- W4386760226 citedByCount "0" @default.
- W4386760226 crossrefType "journal-article" @default.
- W4386760226 hasAuthorship W4386760226A5010931773 @default.
- W4386760226 hasAuthorship W4386760226A5067322004 @default.
- W4386760226 hasAuthorship W4386760226A5074942308 @default.
- W4386760226 hasAuthorship W4386760226A5089960389 @default.
- W4386760226 hasBestOaLocation W43867602261 @default.
- W4386760226 hasConcept C11413529 @default.
- W4386760226 hasConcept C115961682 @default.
- W4386760226 hasConcept C127413603 @default.
- W4386760226 hasConcept C13944312 @default.
- W4386760226 hasConcept C146978453 @default.
- W4386760226 hasConcept C154945302 @default.
- W4386760226 hasConcept C179799912 @default.
- W4386760226 hasConcept C191178318 @default.
- W4386760226 hasConcept C204323151 @default.
- W4386760226 hasConcept C41008148 @default.
- W4386760226 hasConcept C45347329 @default.
- W4386760226 hasConcept C50644808 @default.
- W4386760226 hasConcept C554190296 @default.
- W4386760226 hasConcept C76155785 @default.
- W4386760226 hasConcept C81363708 @default.
- W4386760226 hasConceptScore W4386760226C11413529 @default.
- W4386760226 hasConceptScore W4386760226C115961682 @default.
- W4386760226 hasConceptScore W4386760226C127413603 @default.
- W4386760226 hasConceptScore W4386760226C13944312 @default.
- W4386760226 hasConceptScore W4386760226C146978453 @default.
- W4386760226 hasConceptScore W4386760226C154945302 @default.
- W4386760226 hasConceptScore W4386760226C179799912 @default.
- W4386760226 hasConceptScore W4386760226C191178318 @default.
- W4386760226 hasConceptScore W4386760226C204323151 @default.
- W4386760226 hasConceptScore W4386760226C41008148 @default.
- W4386760226 hasConceptScore W4386760226C45347329 @default.
- W4386760226 hasConceptScore W4386760226C50644808 @default.