Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386760978> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4386760978 endingPage "105446" @default.
- W4386760978 startingPage "105446" @default.
- W4386760978 abstract "Detecting heart disease is challenging in clinical settings, leading to an increase in mortality rates. Current detection processes often rely on Electrocardiography (ECG) signal analysis, which requires accurate data processing and feature extraction. Traditional methods have limitations like processing time and accuracy. To address these issues, a novel approach called Gradient Squirrel Search Algorithm-Deep Maxout Network (GSSA-DMN) is proposed for more effective heart disease detection. The proposed GSSA-DMN approach involves several steps. Initially, input data is obtained from a specific database and subjected to data pre-processing, including log scaling for pattern transformation. Feature selection is then performed using ReliefF on the pre-processed data. The core of the approach lies in the Deep Maxout Network (DMN) trained by the Gradient Squirrel Search Algorithm (GSSA), which combines Gradient Descent Optimization (GDO) with the Squirrel Search Algorithm (SSA). The GSSA-DMN approach demonstrates remarkable performance. It achieves high accuracy, sensitivity, and specificity values of approximately 93.2%, 93%, and 91.5%, respectively. These results indicate its effectiveness in heart disease detection. Comparatively, the proposed GSSA-DMN method outperforms existing techniques. Its accuracy surpasses those of other methods by margins of 6.97%, 5.79%, 4.50%, 3.43%, and 1.93% when compared to BF-PSO, Bi-LSTM-CRF, XGBoost, RLNNC, and DMOA-SqueezeNet for K-value. This suggests that GSSA-DMN provides superior accuracy in detecting heart disease. In summary, the GSSA-DMN approach presents a promising solution for improving the accuracy and efficiency of heart disease detection compared to traditional methods and existing state-of-the-art techniques." @default.
- W4386760978 created "2023-09-16" @default.
- W4386760978 creator A5007819572 @default.
- W4386760978 creator A5061670527 @default.
- W4386760978 creator A5066203544 @default.
- W4386760978 creator A5092602340 @default.
- W4386760978 date "2024-01-01" @default.
- W4386760978 modified "2023-10-16" @default.
- W4386760978 title "ReliefF based feature selection and Gradient Squirrel search Algorithm enabled Deep Maxout Network for detection of heart disease" @default.
- W4386760978 cites W2118023438 @default.
- W4386760978 cites W2569214105 @default.
- W4386760978 cites W2748867426 @default.
- W4386760978 cites W2753772327 @default.
- W4386760978 cites W2929439730 @default.
- W4386760978 cites W2954366169 @default.
- W4386760978 cites W2973035532 @default.
- W4386760978 cites W2991214932 @default.
- W4386760978 cites W3130534618 @default.
- W4386760978 cites W3156606446 @default.
- W4386760978 cites W3179896227 @default.
- W4386760978 cites W3198322721 @default.
- W4386760978 cites W3207388702 @default.
- W4386760978 cites W3207953707 @default.
- W4386760978 cites W4229008232 @default.
- W4386760978 cites W4281639263 @default.
- W4386760978 cites W4309773939 @default.
- W4386760978 cites W4311180996 @default.
- W4386760978 cites W4321365799 @default.
- W4386760978 doi "https://doi.org/10.1016/j.bspc.2023.105446" @default.
- W4386760978 hasPublicationYear "2024" @default.
- W4386760978 type Work @default.
- W4386760978 citedByCount "0" @default.
- W4386760978 crossrefType "journal-article" @default.
- W4386760978 hasAuthorship W4386760978A5007819572 @default.
- W4386760978 hasAuthorship W4386760978A5061670527 @default.
- W4386760978 hasAuthorship W4386760978A5066203544 @default.
- W4386760978 hasAuthorship W4386760978A5092602340 @default.
- W4386760978 hasConcept C119857082 @default.
- W4386760978 hasConcept C138885662 @default.
- W4386760978 hasConcept C148483581 @default.
- W4386760978 hasConcept C153180895 @default.
- W4386760978 hasConcept C153258448 @default.
- W4386760978 hasConcept C154945302 @default.
- W4386760978 hasConcept C2776401178 @default.
- W4386760978 hasConcept C41008148 @default.
- W4386760978 hasConcept C41895202 @default.
- W4386760978 hasConcept C50644808 @default.
- W4386760978 hasConcept C52622490 @default.
- W4386760978 hasConceptScore W4386760978C119857082 @default.
- W4386760978 hasConceptScore W4386760978C138885662 @default.
- W4386760978 hasConceptScore W4386760978C148483581 @default.
- W4386760978 hasConceptScore W4386760978C153180895 @default.
- W4386760978 hasConceptScore W4386760978C153258448 @default.
- W4386760978 hasConceptScore W4386760978C154945302 @default.
- W4386760978 hasConceptScore W4386760978C2776401178 @default.
- W4386760978 hasConceptScore W4386760978C41008148 @default.
- W4386760978 hasConceptScore W4386760978C41895202 @default.
- W4386760978 hasConceptScore W4386760978C50644808 @default.
- W4386760978 hasConceptScore W4386760978C52622490 @default.
- W4386760978 hasLocation W43867609781 @default.
- W4386760978 hasOpenAccess W4386760978 @default.
- W4386760978 hasPrimaryLocation W43867609781 @default.
- W4386760978 hasRelatedWork W1964120219 @default.
- W4386760978 hasRelatedWork W2000165426 @default.
- W4386760978 hasRelatedWork W2144059113 @default.
- W4386760978 hasRelatedWork W2146076056 @default.
- W4386760978 hasRelatedWork W2385132419 @default.
- W4386760978 hasRelatedWork W2546942002 @default.
- W4386760978 hasRelatedWork W2772780115 @default.
- W4386760978 hasRelatedWork W2811390910 @default.
- W4386760978 hasRelatedWork W3003836766 @default.
- W4386760978 hasRelatedWork W2345184372 @default.
- W4386760978 hasVolume "87" @default.
- W4386760978 isParatext "false" @default.
- W4386760978 isRetracted "false" @default.
- W4386760978 workType "article" @default.