Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386761077> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4386761077 endingPage "131" @default.
- W4386761077 startingPage "122" @default.
- W4386761077 abstract "The accumulation of carotid plaque leads to carotid artery stenosis, which in turn increases the risk of cerebrovascular disease. Non-invasive diagnosis of carotid stenosis using fundus images offers a promising approach. However, the challenge lies in extracting relevant features from these images, as convolutional neural networks(CNNs) or Transformers, which focus solely on individual images, fail to consider the interdependencies between them, leading to limited diagnostic accuracy. To address this issue, we propose a novel and effective network by combining CNNs and multi-relational graph convolutional neural networks(M-GCNs). Firstly, we feed the input images into four distinct branches, which consist of CNNs or Transformers, with each branch associated with a particular relation. This process generates unique feature vectors for each branch. Secondly, we construct a multi-graph for the four kinds of clinical data, such as gender, age, sex and pid, to obtain four adjacency matrices. Finally, the feature vectors and the corresponding four adjacency matrices are input into the graph convolutional network layer respectively to obtain the prediction features, and then the prediction results are obtained through the fully connected layer. Experiments are carried out on a private dataset and the results demonstrate that the accuracy of the proposed algorithm is 10%–20% higher than that of the comparison model. Our code is available at https://github.com/momoyrz/Carotid-stenosis ." @default.
- W4386761077 created "2023-09-16" @default.
- W4386761077 creator A5001212991 @default.
- W4386761077 creator A5009668529 @default.
- W4386761077 creator A5033777282 @default.
- W4386761077 creator A5063176416 @default.
- W4386761077 creator A5077778634 @default.
- W4386761077 creator A5081106797 @default.
- W4386761077 creator A5081895974 @default.
- W4386761077 creator A5085145203 @default.
- W4386761077 date "2023-01-01" @default.
- W4386761077 modified "2023-09-27" @default.
- W4386761077 title "Multi-relational Graph Convolutional Neural Networks for Carotid Artery Stenosis Diagnosis via Fundus Images" @default.
- W4386761077 cites W1752064231 @default.
- W4386761077 cites W1996383835 @default.
- W4386761077 cites W2022654399 @default.
- W4386761077 cites W2052274461 @default.
- W4386761077 cites W2053651553 @default.
- W4386761077 cites W2194775991 @default.
- W4386761077 cites W2321584735 @default.
- W4386761077 cites W2557738935 @default.
- W4386761077 cites W2604314403 @default.
- W4386761077 cites W2618530766 @default.
- W4386761077 cites W2786016794 @default.
- W4386761077 cites W2906751147 @default.
- W4386761077 cites W2934708523 @default.
- W4386761077 cites W2948729509 @default.
- W4386761077 cites W3004713990 @default.
- W4386761077 cites W3101507774 @default.
- W4386761077 cites W3138516171 @default.
- W4386761077 cites W3151130473 @default.
- W4386761077 cites W3174137612 @default.
- W4386761077 cites W4294897983 @default.
- W4386761077 cites W4319792505 @default.
- W4386761077 cites W4362603432 @default.
- W4386761077 doi "https://doi.org/10.1007/978-3-031-44013-7_13" @default.
- W4386761077 hasPublicationYear "2023" @default.
- W4386761077 type Work @default.
- W4386761077 citedByCount "0" @default.
- W4386761077 crossrefType "book-chapter" @default.
- W4386761077 hasAuthorship W4386761077A5001212991 @default.
- W4386761077 hasAuthorship W4386761077A5009668529 @default.
- W4386761077 hasAuthorship W4386761077A5033777282 @default.
- W4386761077 hasAuthorship W4386761077A5063176416 @default.
- W4386761077 hasAuthorship W4386761077A5077778634 @default.
- W4386761077 hasAuthorship W4386761077A5081106797 @default.
- W4386761077 hasAuthorship W4386761077A5081895974 @default.
- W4386761077 hasAuthorship W4386761077A5085145203 @default.
- W4386761077 hasConcept C110484373 @default.
- W4386761077 hasConcept C11413529 @default.
- W4386761077 hasConcept C132525143 @default.
- W4386761077 hasConcept C153180895 @default.
- W4386761077 hasConcept C154945302 @default.
- W4386761077 hasConcept C180356752 @default.
- W4386761077 hasConcept C188441871 @default.
- W4386761077 hasConcept C41008148 @default.
- W4386761077 hasConcept C80444323 @default.
- W4386761077 hasConcept C81363708 @default.
- W4386761077 hasConceptScore W4386761077C110484373 @default.
- W4386761077 hasConceptScore W4386761077C11413529 @default.
- W4386761077 hasConceptScore W4386761077C132525143 @default.
- W4386761077 hasConceptScore W4386761077C153180895 @default.
- W4386761077 hasConceptScore W4386761077C154945302 @default.
- W4386761077 hasConceptScore W4386761077C180356752 @default.
- W4386761077 hasConceptScore W4386761077C188441871 @default.
- W4386761077 hasConceptScore W4386761077C41008148 @default.
- W4386761077 hasConceptScore W4386761077C80444323 @default.
- W4386761077 hasConceptScore W4386761077C81363708 @default.
- W4386761077 hasLocation W43867610771 @default.
- W4386761077 hasOpenAccess W4386761077 @default.
- W4386761077 hasPrimaryLocation W43867610771 @default.
- W4386761077 hasRelatedWork W2610906757 @default.
- W4386761077 hasRelatedWork W2613736958 @default.
- W4386761077 hasRelatedWork W2743258233 @default.
- W4386761077 hasRelatedWork W2758063741 @default.
- W4386761077 hasRelatedWork W2908861653 @default.
- W4386761077 hasRelatedWork W2977314777 @default.
- W4386761077 hasRelatedWork W3208883981 @default.
- W4386761077 hasRelatedWork W4307834408 @default.
- W4386761077 hasRelatedWork W4320925816 @default.
- W4386761077 hasRelatedWork W4384929629 @default.
- W4386761077 isParatext "false" @default.
- W4386761077 isRetracted "false" @default.
- W4386761077 workType "book-chapter" @default.