Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386764436> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4386764436 abstract "Plant diseases are a significant concern for the agricultural industry, as they can reduce crop yields and cause economic losses. Tea is a popular and widely consumed beverage in India, and the tea crop can be affected by different leaf diseases. Early detection of the diseases is essential to prevent the spread of other crops and minimize production losses. Traditional methods of detecting leaf diseases involve manually interpreting the images, which can be time-consuming and laborious. To address this, artificial intelligence techniques, specifically deep learning models are used for more accurate and efficient detection of tea leaf disease. This study compares the performance of several deep learning models including ResNet50, Resnet50-RS, ResNetlOl-V2, and Modified-ResNet50-V2 (M-RN50V2) and finds that the M-RN50V2 model has the highest accuracy at 90.S4%. Overall, this work aims to promote sustainable agriculture by leveraging cutting-edge technology for disease classification." @default.
- W4386764436 created "2023-09-16" @default.
- W4386764436 creator A5018975678 @default.
- W4386764436 creator A5027369576 @default.
- W4386764436 creator A5054805481 @default.
- W4386764436 creator A5079837164 @default.
- W4386764436 creator A5082092821 @default.
- W4386764436 creator A5091947107 @default.
- W4386764436 date "2023-07-14" @default.
- W4386764436 modified "2023-09-26" @default.
- W4386764436 title "Tea Leaf Disease Identification using Improved Convolution Neural Network" @default.
- W4386764436 cites W2165059764 @default.
- W4386764436 cites W2194775991 @default.
- W4386764436 cites W2807205902 @default.
- W4386764436 cites W2901380936 @default.
- W4386764436 cites W2907625092 @default.
- W4386764436 cites W2911740897 @default.
- W4386764436 cites W2919254004 @default.
- W4386764436 cites W2929514558 @default.
- W4386764436 cites W2954934222 @default.
- W4386764436 cites W2979868560 @default.
- W4386764436 cites W2986403615 @default.
- W4386764436 cites W3047205692 @default.
- W4386764436 doi "https://doi.org/10.1109/icdate58146.2023.10248508" @default.
- W4386764436 hasPublicationYear "2023" @default.
- W4386764436 type Work @default.
- W4386764436 citedByCount "0" @default.
- W4386764436 crossrefType "proceedings-article" @default.
- W4386764436 hasAuthorship W4386764436A5018975678 @default.
- W4386764436 hasAuthorship W4386764436A5027369576 @default.
- W4386764436 hasAuthorship W4386764436A5054805481 @default.
- W4386764436 hasAuthorship W4386764436A5079837164 @default.
- W4386764436 hasAuthorship W4386764436A5082092821 @default.
- W4386764436 hasAuthorship W4386764436A5091947107 @default.
- W4386764436 hasConcept C108583219 @default.
- W4386764436 hasConcept C116834253 @default.
- W4386764436 hasConcept C118518473 @default.
- W4386764436 hasConcept C119857082 @default.
- W4386764436 hasConcept C127413603 @default.
- W4386764436 hasConcept C137580998 @default.
- W4386764436 hasConcept C154945302 @default.
- W4386764436 hasConcept C18903297 @default.
- W4386764436 hasConcept C41008148 @default.
- W4386764436 hasConcept C45347329 @default.
- W4386764436 hasConcept C50644808 @default.
- W4386764436 hasConcept C59822182 @default.
- W4386764436 hasConcept C6557445 @default.
- W4386764436 hasConcept C81363708 @default.
- W4386764436 hasConcept C86803240 @default.
- W4386764436 hasConcept C88463610 @default.
- W4386764436 hasConceptScore W4386764436C108583219 @default.
- W4386764436 hasConceptScore W4386764436C116834253 @default.
- W4386764436 hasConceptScore W4386764436C118518473 @default.
- W4386764436 hasConceptScore W4386764436C119857082 @default.
- W4386764436 hasConceptScore W4386764436C127413603 @default.
- W4386764436 hasConceptScore W4386764436C137580998 @default.
- W4386764436 hasConceptScore W4386764436C154945302 @default.
- W4386764436 hasConceptScore W4386764436C18903297 @default.
- W4386764436 hasConceptScore W4386764436C41008148 @default.
- W4386764436 hasConceptScore W4386764436C45347329 @default.
- W4386764436 hasConceptScore W4386764436C50644808 @default.
- W4386764436 hasConceptScore W4386764436C59822182 @default.
- W4386764436 hasConceptScore W4386764436C6557445 @default.
- W4386764436 hasConceptScore W4386764436C81363708 @default.
- W4386764436 hasConceptScore W4386764436C86803240 @default.
- W4386764436 hasConceptScore W4386764436C88463610 @default.
- W4386764436 hasLocation W43867644361 @default.
- W4386764436 hasOpenAccess W4386764436 @default.
- W4386764436 hasPrimaryLocation W43867644361 @default.
- W4386764436 hasRelatedWork W2731899572 @default.
- W4386764436 hasRelatedWork W2999805992 @default.
- W4386764436 hasRelatedWork W3116150086 @default.
- W4386764436 hasRelatedWork W3133861977 @default.
- W4386764436 hasRelatedWork W4200173597 @default.
- W4386764436 hasRelatedWork W4223943233 @default.
- W4386764436 hasRelatedWork W4291897433 @default.
- W4386764436 hasRelatedWork W4312417841 @default.
- W4386764436 hasRelatedWork W4321369474 @default.
- W4386764436 hasRelatedWork W4380075502 @default.
- W4386764436 isParatext "false" @default.
- W4386764436 isRetracted "false" @default.
- W4386764436 workType "article" @default.