Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386768385> ?p ?o ?g. }
- W4386768385 endingPage "116413" @default.
- W4386768385 startingPage "116413" @default.
- W4386768385 abstract "We propose a novel approach to the linear viscoelastic problem of shear-deformable geometrically exact beams. The generalized Maxwell model for one-dimensional solids is here efficiently extended to the case of arbitrarily curved beams undergoing finite displacement and rotations. High efficiency is achieved by combining a series of distinguishing features, that are: (i) the formulation is displacement-based, therefore no additional unknowns, other than incremental displacements and rotations, are needed for the internal variables associated with the rate-dependent material; (ii) the governing equations are discretized in space using the isogeometric collocation method, meaning that elements integration is totally bypassed; (iii) finite rotations are updated using the incremental rotation vector, leading to two main benefits: minimum number of rotation unknowns (the three components of the incremental rotation vector) and no singularity problems; (iv) the same SO(3)-consistent linearization of the governing equations and update procedures as for non-rate-dependent linear elastic material can be used; (v) a standard second-order accurate time integration scheme is made consistent with the underlying geometric structure of the kinematic problem. Moreover, taking full advantage of the isogeometric analysis features, the formulation permits accurately representing beams and beam structures with highly complex initial shape and topology, paving the way for a large number of potential applications in the field of architectured materials, meta-materials, morphing/programmable objects, topological optimizations, etc. Numerical applications are finally presented in order to demonstrate attributes and potentialities of the proposed formulation." @default.
- W4386768385 created "2023-09-16" @default.
- W4386768385 creator A5034387556 @default.
- W4386768385 creator A5035267940 @default.
- W4386768385 creator A5085866863 @default.
- W4386768385 date "2023-12-01" @default.
- W4386768385 modified "2023-09-29" @default.
- W4386768385 title "An efficient displacement-based isogeometric formulation for geometrically exact viscoelastic beams" @default.
- W4386768385 cites W1054236399 @default.
- W4386768385 cites W1965261760 @default.
- W4386768385 cites W1970773485 @default.
- W4386768385 cites W1975423472 @default.
- W4386768385 cites W1979710921 @default.
- W4386768385 cites W1981306056 @default.
- W4386768385 cites W1992007771 @default.
- W4386768385 cites W1994022327 @default.
- W4386768385 cites W1998684594 @default.
- W4386768385 cites W2000425991 @default.
- W4386768385 cites W2006144014 @default.
- W4386768385 cites W2009062019 @default.
- W4386768385 cites W2011842302 @default.
- W4386768385 cites W2014083185 @default.
- W4386768385 cites W2027768633 @default.
- W4386768385 cites W2034228437 @default.
- W4386768385 cites W2034373308 @default.
- W4386768385 cites W2035596320 @default.
- W4386768385 cites W2036135051 @default.
- W4386768385 cites W2037317068 @default.
- W4386768385 cites W2043042987 @default.
- W4386768385 cites W2044601069 @default.
- W4386768385 cites W2049356190 @default.
- W4386768385 cites W2049960876 @default.
- W4386768385 cites W2059115474 @default.
- W4386768385 cites W2079292524 @default.
- W4386768385 cites W2079543226 @default.
- W4386768385 cites W2081094308 @default.
- W4386768385 cites W2082144899 @default.
- W4386768385 cites W2083371111 @default.
- W4386768385 cites W2088627329 @default.
- W4386768385 cites W2089123823 @default.
- W4386768385 cites W2097777509 @default.
- W4386768385 cites W2099748123 @default.
- W4386768385 cites W2101039939 @default.
- W4386768385 cites W2102652546 @default.
- W4386768385 cites W2104143529 @default.
- W4386768385 cites W2112277145 @default.
- W4386768385 cites W2114184487 @default.
- W4386768385 cites W2120258918 @default.
- W4386768385 cites W2121602193 @default.
- W4386768385 cites W2125215215 @default.
- W4386768385 cites W2125883408 @default.
- W4386768385 cites W2140904292 @default.
- W4386768385 cites W2167880154 @default.
- W4386768385 cites W2344925610 @default.
- W4386768385 cites W2408506384 @default.
- W4386768385 cites W2411092182 @default.
- W4386768385 cites W2470332486 @default.
- W4386768385 cites W2519831124 @default.
- W4386768385 cites W2522007538 @default.
- W4386768385 cites W2605898329 @default.
- W4386768385 cites W2725409724 @default.
- W4386768385 cites W2742463646 @default.
- W4386768385 cites W2762242060 @default.
- W4386768385 cites W2764149823 @default.
- W4386768385 cites W2765802355 @default.
- W4386768385 cites W2801788870 @default.
- W4386768385 cites W2806567946 @default.
- W4386768385 cites W2886034197 @default.
- W4386768385 cites W2891437822 @default.
- W4386768385 cites W2900318352 @default.
- W4386768385 cites W2903446851 @default.
- W4386768385 cites W2933287546 @default.
- W4386768385 cites W2937368875 @default.
- W4386768385 cites W2953062881 @default.
- W4386768385 cites W2965206323 @default.
- W4386768385 cites W2978155273 @default.
- W4386768385 cites W2979827124 @default.
- W4386768385 cites W2983310758 @default.
- W4386768385 cites W2999776937 @default.
- W4386768385 cites W3003936790 @default.
- W4386768385 cites W3016809663 @default.
- W4386768385 cites W3035988788 @default.
- W4386768385 cites W3039288812 @default.
- W4386768385 cites W3092055259 @default.
- W4386768385 cites W3109677601 @default.
- W4386768385 cites W3131557394 @default.
- W4386768385 cites W3144481165 @default.
- W4386768385 cites W3149994073 @default.
- W4386768385 cites W3155134627 @default.
- W4386768385 cites W3182483921 @default.
- W4386768385 cites W3187074167 @default.
- W4386768385 cites W3193013584 @default.
- W4386768385 cites W3202973516 @default.
- W4386768385 cites W3205140067 @default.
- W4386768385 cites W3208810372 @default.
- W4386768385 cites W3209012340 @default.
- W4386768385 cites W4283772717 @default.
- W4386768385 cites W4284714490 @default.