Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386768594> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4386768594 endingPage "3867" @default.
- W4386768594 startingPage "3864" @default.
- W4386768594 abstract "Subgraphs are obtained by extracting a subset of vertices and a subset of edges from the associated original graphs, and many graph properties are known to be inherited by subgraphs. Subgraphs can be applied in many areas such as social networks, recommender systems, biochemistry and fraud discovery. Researchers from various communities have paid a great deal of attention to investigate numerous subgraph problems, by proposing algorithms that mainly extract important structures of a given graph. There are however some limitations that should be addressed, with regard to the efficiency, effectiveness and scalability of these traditional algorithms. As a consequence, machine learning techniques---one of the most latest trends---have recently been employed in the database community to address various subgraph problems considering that they have been shown to be beneficial in dealing with graph-related problems. We discuss learning-based approaches for four well known subgraph problems in this tutorial, namely subgraph isomorphism, maximum common subgraph, community detection and community search problems. We give a general description of each proposed model, and analyse its design and performance. To allow further investigations on relevant subgraph problems, we suggest some potential future directions in this area. We believe that this work can be used as one of the primary resources, for researchers who intend to develop learning models in solving problems that are closely related to subgraphs." @default.
- W4386768594 created "2023-09-16" @default.
- W4386768594 creator A5005847882 @default.
- W4386768594 creator A5077949136 @default.
- W4386768594 creator A5087156352 @default.
- W4386768594 creator A5088897580 @default.
- W4386768594 date "2023-08-01" @default.
- W4386768594 modified "2023-09-26" @default.
- W4386768594 title "Machine Learning for Subgraph Extraction: Methods, Applications and Challenges" @default.
- W4386768594 cites W1964419312 @default.
- W4386768594 cites W2013216457 @default.
- W4386768594 cites W2036265926 @default.
- W4386768594 cites W2053841470 @default.
- W4386768594 cites W2102039892 @default.
- W4386768594 cites W2127048411 @default.
- W4386768594 cites W2401610261 @default.
- W4386768594 cites W2800663042 @default.
- W4386768594 cites W2962788915 @default.
- W4386768594 cites W3081214609 @default.
- W4386768594 cites W3126625348 @default.
- W4386768594 cites W3148088798 @default.
- W4386768594 cites W3158196591 @default.
- W4386768594 cites W3176186668 @default.
- W4386768594 cites W3176891072 @default.
- W4386768594 cites W4237705776 @default.
- W4386768594 cites W4249388598 @default.
- W4386768594 cites W4281751567 @default.
- W4386768594 cites W4283328482 @default.
- W4386768594 doi "https://doi.org/10.14778/3611540.3611571" @default.
- W4386768594 hasPublicationYear "2023" @default.
- W4386768594 type Work @default.
- W4386768594 citedByCount "0" @default.
- W4386768594 crossrefType "journal-article" @default.
- W4386768594 hasAuthorship W4386768594A5005847882 @default.
- W4386768594 hasAuthorship W4386768594A5077949136 @default.
- W4386768594 hasAuthorship W4386768594A5087156352 @default.
- W4386768594 hasAuthorship W4386768594A5088897580 @default.
- W4386768594 hasConcept C119857082 @default.
- W4386768594 hasConcept C131992880 @default.
- W4386768594 hasConcept C132525143 @default.
- W4386768594 hasConcept C154945302 @default.
- W4386768594 hasConcept C191241153 @default.
- W4386768594 hasConcept C203776342 @default.
- W4386768594 hasConcept C22149727 @default.
- W4386768594 hasConcept C2522767166 @default.
- W4386768594 hasConcept C41008148 @default.
- W4386768594 hasConcept C48044578 @default.
- W4386768594 hasConcept C61665672 @default.
- W4386768594 hasConcept C77088390 @default.
- W4386768594 hasConcept C80444323 @default.
- W4386768594 hasConceptScore W4386768594C119857082 @default.
- W4386768594 hasConceptScore W4386768594C131992880 @default.
- W4386768594 hasConceptScore W4386768594C132525143 @default.
- W4386768594 hasConceptScore W4386768594C154945302 @default.
- W4386768594 hasConceptScore W4386768594C191241153 @default.
- W4386768594 hasConceptScore W4386768594C203776342 @default.
- W4386768594 hasConceptScore W4386768594C22149727 @default.
- W4386768594 hasConceptScore W4386768594C2522767166 @default.
- W4386768594 hasConceptScore W4386768594C41008148 @default.
- W4386768594 hasConceptScore W4386768594C48044578 @default.
- W4386768594 hasConceptScore W4386768594C61665672 @default.
- W4386768594 hasConceptScore W4386768594C77088390 @default.
- W4386768594 hasConceptScore W4386768594C80444323 @default.
- W4386768594 hasIssue "12" @default.
- W4386768594 hasLocation W43867685941 @default.
- W4386768594 hasOpenAccess W4386768594 @default.
- W4386768594 hasPrimaryLocation W43867685941 @default.
- W4386768594 hasRelatedWork W1482551403 @default.
- W4386768594 hasRelatedWork W1711073729 @default.
- W4386768594 hasRelatedWork W1965191464 @default.
- W4386768594 hasRelatedWork W2018568077 @default.
- W4386768594 hasRelatedWork W2128390795 @default.
- W4386768594 hasRelatedWork W2393701947 @default.
- W4386768594 hasRelatedWork W2915540008 @default.
- W4386768594 hasRelatedWork W2954463587 @default.
- W4386768594 hasRelatedWork W4315588756 @default.
- W4386768594 hasRelatedWork W4315630803 @default.
- W4386768594 hasVolume "16" @default.
- W4386768594 isParatext "false" @default.
- W4386768594 isRetracted "false" @default.
- W4386768594 workType "article" @default.