Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386768914> ?p ?o ?g. }
- W4386768914 endingPage "3556" @default.
- W4386768914 startingPage "3543" @default.
- W4386768914 abstract "In modern online services, it is of growing importance to process web-scale graph data and high-dimensional sparse data together into embeddings for downstream tasks, such as recommendation, advertisement, prediction, and classification. There exist learning methods and systems for either high-dimensional sparse data or graphs, but not both. There is an urgent need in industry to have a system to efficiently process both types of data for higher business value, which however, is challenging. The data in Tencent contains billions of samples with sparse features in very high dimensions, and graphs are also with billions of nodes and edges. Moreover, learning models often perform expensive operations with high computational costs. It is difficult to store, manage, and retrieve massive sparse data and graph data together, since they exhibit different characteristics. We present EmbedX, an industrial distributed learning framework from Tencent, which is versatile and efficient to support embedding on both graphs and high-dimensional sparse data. EmbedX consists of distributed server layers for graph and sparse data management, and optimized parameter and graph operators, to efficiently support 4 categories of methods, including deep learning models on high-dimensional sparse data, network embedding methods, graph neural networks, and in-house developed joint learning models on both types of data. Extensive experiments on massive Tencent data and public data demonstrate the superiority of EmbedX. For instance, on a Tencent dataset with 1.3 billion nodes, 35 billion edges, and 2.8 billion samples with sparse features in 1.6 billion dimension, EmbedX performs an order of magnitude faster for training and our joint models achieve superior effectiveness. EmbedX is deployed in Tencent. A/B test on real use cases further validates the power of EmbedX. EmbedX is implemented in C++ and open-sourced at https://github.com/Tencent/embedx." @default.
- W4386768914 created "2023-09-16" @default.
- W4386768914 creator A5029261155 @default.
- W4386768914 creator A5032019231 @default.
- W4386768914 creator A5037796706 @default.
- W4386768914 creator A5040392907 @default.
- W4386768914 creator A5075117167 @default.
- W4386768914 creator A5089547589 @default.
- W4386768914 date "2023-08-01" @default.
- W4386768914 modified "2023-09-26" @default.
- W4386768914 title "EmbedX: A Versatile, Efficient and Scalable Platform to Embed Both Graphs and High-Dimensional Sparse Data" @default.
- W4386768914 cites W2052261215 @default.
- W4386768914 cites W2136189984 @default.
- W4386768914 cites W2155893237 @default.
- W4386768914 cites W2475334473 @default.
- W4386768914 cites W2512971201 @default.
- W4386768914 cites W2604662567 @default.
- W4386768914 cites W2605350416 @default.
- W4386768914 cites W2607500032 @default.
- W4386768914 cites W2723293840 @default.
- W4386768914 cites W2743104969 @default.
- W4386768914 cites W2770250693 @default.
- W4386768914 cites W2921980263 @default.
- W4386768914 cites W2962756421 @default.
- W4386768914 cites W2962810718 @default.
- W4386768914 cites W2962989965 @default.
- W4386768914 cites W2963601856 @default.
- W4386768914 cites W2964051675 @default.
- W4386768914 cites W2970929262 @default.
- W4386768914 cites W2972801466 @default.
- W4386768914 cites W2973172293 @default.
- W4386768914 cites W2982231843 @default.
- W4386768914 cites W2982902390 @default.
- W4386768914 cites W2996471668 @default.
- W4386768914 cites W3012871709 @default.
- W4386768914 cites W3100848837 @default.
- W4386768914 cites W3104097132 @default.
- W4386768914 cites W3158146252 @default.
- W4386768914 cites W3190524507 @default.
- W4386768914 cites W3197720002 @default.
- W4386768914 cites W4226012237 @default.
- W4386768914 cites W4226328099 @default.
- W4386768914 cites W4306317895 @default.
- W4386768914 doi "https://doi.org/10.14778/3611540.3611546" @default.
- W4386768914 hasPublicationYear "2023" @default.
- W4386768914 type Work @default.
- W4386768914 citedByCount "0" @default.
- W4386768914 crossrefType "journal-article" @default.
- W4386768914 hasAuthorship W4386768914A5029261155 @default.
- W4386768914 hasAuthorship W4386768914A5032019231 @default.
- W4386768914 hasAuthorship W4386768914A5037796706 @default.
- W4386768914 hasAuthorship W4386768914A5040392907 @default.
- W4386768914 hasAuthorship W4386768914A5075117167 @default.
- W4386768914 hasAuthorship W4386768914A5089547589 @default.
- W4386768914 hasConcept C102192266 @default.
- W4386768914 hasConcept C108583219 @default.
- W4386768914 hasConcept C119857082 @default.
- W4386768914 hasConcept C121332964 @default.
- W4386768914 hasConcept C124101348 @default.
- W4386768914 hasConcept C13251829 @default.
- W4386768914 hasConcept C132525143 @default.
- W4386768914 hasConcept C154945302 @default.
- W4386768914 hasConcept C163716315 @default.
- W4386768914 hasConcept C1668388 @default.
- W4386768914 hasConcept C203776342 @default.
- W4386768914 hasConcept C41008148 @default.
- W4386768914 hasConcept C41608201 @default.
- W4386768914 hasConcept C48044578 @default.
- W4386768914 hasConcept C56372850 @default.
- W4386768914 hasConcept C62520636 @default.
- W4386768914 hasConcept C77088390 @default.
- W4386768914 hasConcept C80444323 @default.
- W4386768914 hasConceptScore W4386768914C102192266 @default.
- W4386768914 hasConceptScore W4386768914C108583219 @default.
- W4386768914 hasConceptScore W4386768914C119857082 @default.
- W4386768914 hasConceptScore W4386768914C121332964 @default.
- W4386768914 hasConceptScore W4386768914C124101348 @default.
- W4386768914 hasConceptScore W4386768914C13251829 @default.
- W4386768914 hasConceptScore W4386768914C132525143 @default.
- W4386768914 hasConceptScore W4386768914C154945302 @default.
- W4386768914 hasConceptScore W4386768914C163716315 @default.
- W4386768914 hasConceptScore W4386768914C1668388 @default.
- W4386768914 hasConceptScore W4386768914C203776342 @default.
- W4386768914 hasConceptScore W4386768914C41008148 @default.
- W4386768914 hasConceptScore W4386768914C41608201 @default.
- W4386768914 hasConceptScore W4386768914C48044578 @default.
- W4386768914 hasConceptScore W4386768914C56372850 @default.
- W4386768914 hasConceptScore W4386768914C62520636 @default.
- W4386768914 hasConceptScore W4386768914C77088390 @default.
- W4386768914 hasConceptScore W4386768914C80444323 @default.
- W4386768914 hasIssue "12" @default.
- W4386768914 hasLocation W43867689141 @default.
- W4386768914 hasOpenAccess W4386768914 @default.
- W4386768914 hasPrimaryLocation W43867689141 @default.
- W4386768914 hasRelatedWork W2795261237 @default.
- W4386768914 hasRelatedWork W3014300295 @default.
- W4386768914 hasRelatedWork W3164822677 @default.
- W4386768914 hasRelatedWork W4223943233 @default.