Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386768997> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4386768997 endingPage "13" @default.
- W4386768997 startingPage "1" @default.
- W4386768997 abstract "Indian Premier League (IPL) is the most popular T20 domestic sporting league globally. Player selection is crucial in winning the competitive IPL tournament. Thus, team management select 11 players for each match from a team’s squad of 15 to 25 players. Different player statistics are analysed to select the best playing 11 for each match. This study attempts an approach where the on-field player performance is used to determine the playing-11. A player’s on-field performance in a match is computed as a single metric considering a player’s attributes against every player present in the opposition squad. For this computation, past ball-by-ball data is cleaned and mined to generate data containing player-vs-player performance attributes. Next, the various performance attributes for a player-vs-player combination is converted into a player’s performance rating by computing a weighted score of the performance attributes. Finally, an optimisation model is proposed and developed to determine the best playing-11 using the computed performance ratings. The developed optimisation model suggests the playing-11 that maximises the possibility of winning against a given opponent. The proposed procedure to determine the playing-11 for an IPL match is demonstrated using past data from 2008-20. The demonstration indicates that for matches in the league stage, the suggested playing-11 by model and the actual playing-11 have a ∼7% similarity across all teams. The remaining ∼3% are different from those selected in the actual team. Nevertheless, this difference approximately yields a ∼ Indian Premier League (IPL) is the most popular T20 domestic sporting league globally. Player selection is crucial in winning the competitive IPL tournament. Thus, team management select 11 players for each match from a team’s squad of 15 to 25 players. Different player statistics are analysed to select the best playing 11 for each match. This study attempts an approach where the on-field player performance is used to determine the playing-11. A player’s on-field performance in a match is computed as a single metric considering a player’s attributes against every player present in the opposition squad. For this computation, past ball-by-ball data is cleaned and mined to generate data containing player-vs-player performance attributes. Next, the various performance attributes for a player-vs-player combination is converted into a player’s performance rating by computing a weighted score of the performance attributes. Finally, an optimisation model is proposed and developed to determine the best playing-11 using the computed performance ratings. The developed optimisation model suggests the playing-11 that maximises the possibility of winning against a given opponent. The proposed procedure to determine the playing-11 for an IPL match is demonstrated using past data from 2008-20. The demonstration indicates that for matches in the league stage, the suggested playing-11 by model and the actual playing-11 have a ∼7% similarity across all teams. The remaining ∼3% are different from those selected in the actual team. Nevertheless, this difference approximately yields a ∼13.32% increase in performance rating compared to the existing team.3.32% increase in performance rating compared to the existing team." @default.
- W4386768997 created "2023-09-16" @default.
- W4386768997 creator A5049161795 @default.
- W4386768997 creator A5050108163 @default.
- W4386768997 date "2023-09-13" @default.
- W4386768997 modified "2023-09-26" @default.
- W4386768997 title "Determining the playing 11 based on opposition squad: An IPL illustration" @default.
- W4386768997 cites W2057220407 @default.
- W4386768997 cites W2077889291 @default.
- W4386768997 cites W2284480976 @default.
- W4386768997 cites W2622061131 @default.
- W4386768997 cites W2802105117 @default.
- W4386768997 cites W2969271193 @default.
- W4386768997 cites W2972729247 @default.
- W4386768997 cites W2991307550 @default.
- W4386768997 cites W3038418297 @default.
- W4386768997 cites W3124913613 @default.
- W4386768997 cites W3164529193 @default.
- W4386768997 cites W3166500532 @default.
- W4386768997 cites W3178253465 @default.
- W4386768997 cites W3203416326 @default.
- W4386768997 doi "https://doi.org/10.3233/jsa-220638" @default.
- W4386768997 hasPublicationYear "2023" @default.
- W4386768997 type Work @default.
- W4386768997 citedByCount "0" @default.
- W4386768997 crossrefType "journal-article" @default.
- W4386768997 hasAuthorship W4386768997A5049161795 @default.
- W4386768997 hasAuthorship W4386768997A5050108163 @default.
- W4386768997 hasBestOaLocation W43867689971 @default.
- W4386768997 hasConcept C105795698 @default.
- W4386768997 hasConcept C114614502 @default.
- W4386768997 hasConcept C121332964 @default.
- W4386768997 hasConcept C122041747 @default.
- W4386768997 hasConcept C1276947 @default.
- W4386768997 hasConcept C134306372 @default.
- W4386768997 hasConcept C136975688 @default.
- W4386768997 hasConcept C154945302 @default.
- W4386768997 hasConcept C207456731 @default.
- W4386768997 hasConcept C3018304881 @default.
- W4386768997 hasConcept C33923547 @default.
- W4386768997 hasConcept C38652104 @default.
- W4386768997 hasConcept C41008148 @default.
- W4386768997 hasConcept C41065033 @default.
- W4386768997 hasConcept C42475967 @default.
- W4386768997 hasConceptScore W4386768997C105795698 @default.
- W4386768997 hasConceptScore W4386768997C114614502 @default.
- W4386768997 hasConceptScore W4386768997C121332964 @default.
- W4386768997 hasConceptScore W4386768997C122041747 @default.
- W4386768997 hasConceptScore W4386768997C1276947 @default.
- W4386768997 hasConceptScore W4386768997C134306372 @default.
- W4386768997 hasConceptScore W4386768997C136975688 @default.
- W4386768997 hasConceptScore W4386768997C154945302 @default.
- W4386768997 hasConceptScore W4386768997C207456731 @default.
- W4386768997 hasConceptScore W4386768997C3018304881 @default.
- W4386768997 hasConceptScore W4386768997C33923547 @default.
- W4386768997 hasConceptScore W4386768997C38652104 @default.
- W4386768997 hasConceptScore W4386768997C41008148 @default.
- W4386768997 hasConceptScore W4386768997C41065033 @default.
- W4386768997 hasConceptScore W4386768997C42475967 @default.
- W4386768997 hasLocation W43867689971 @default.
- W4386768997 hasOpenAccess W4386768997 @default.
- W4386768997 hasPrimaryLocation W43867689971 @default.
- W4386768997 hasRelatedWork W2097487632 @default.
- W4386768997 hasRelatedWork W2097754413 @default.
- W4386768997 hasRelatedWork W2203691441 @default.
- W4386768997 hasRelatedWork W2352915833 @default.
- W4386768997 hasRelatedWork W2402799843 @default.
- W4386768997 hasRelatedWork W2658930979 @default.
- W4386768997 hasRelatedWork W2960585129 @default.
- W4386768997 hasRelatedWork W4366460236 @default.
- W4386768997 hasRelatedWork W4386768997 @default.
- W4386768997 hasRelatedWork W2182211095 @default.
- W4386768997 isParatext "false" @default.
- W4386768997 isRetracted "false" @default.
- W4386768997 workType "article" @default.