Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386769297> ?p ?o ?g. }
- W4386769297 endingPage "980" @default.
- W4386769297 startingPage "967" @default.
- W4386769297 abstract "Video-based action recognition is becoming a vital tool in clinical research and neuroscientific study for disorder detection and prediction. However, action recognition currently used in non-human primate (NHP) research relies heavily on intense manual labor and lacks standardized assessment. In this work, we established two standard benchmark datasets of NHPs in the laboratory: MonkeyinLab (MiL), which includes 13 categories of actions and postures, and MiL2D, which includes sequences of two-dimensional (2D) skeleton features. Furthermore, based on recent methodological advances in deep learning and skeleton visualization, we introduced the MonkeyMonitorKit (MonKit) toolbox for automatic action recognition, posture estimation, and identification of fine motor activity in monkeys. Using the datasets and MonKit, we evaluated the daily behaviors of wild-type cynomolgus monkeys within their home cages and experimental environments and compared these observations with the behaviors exhibited by cynomolgus monkeys possessing mutations in the <i>MECP2</i> gene as a disease model of Rett syndrome (RTT). MonKit was used to assess motor function, stereotyped behaviors, and depressive phenotypes, with the outcomes compared with human manual detection. MonKit established consistent criteria for identifying behavior in NHPs with high accuracy and efficiency, thus providing a novel and comprehensive tool for assessing phenotypic behavior in monkeys." @default.
- W4386769297 created "2023-09-16" @default.
- W4386769297 creator A5006322038 @default.
- W4386769297 creator A5010974656 @default.
- W4386769297 creator A5020352221 @default.
- W4386769297 creator A5022137429 @default.
- W4386769297 creator A5026245073 @default.
- W4386769297 creator A5033642702 @default.
- W4386769297 creator A5045839676 @default.
- W4386769297 creator A5068675805 @default.
- W4386769297 creator A5076202570 @default.
- W4386769297 creator A5077004706 @default.
- W4386769297 creator A5080019095 @default.
- W4386769297 creator A5080762339 @default.
- W4386769297 creator A5083896582 @default.
- W4386769297 creator A5090859513 @default.
- W4386769297 date "2023-01-01" @default.
- W4386769297 modified "2023-10-11" @default.
- W4386769297 title "Deep learning-based activity recognition and fine motor identification using 2D skeletons of cynomolgus monkeys" @default.
- W4386769297 cites W1559742681 @default.
- W4386769297 cites W1995107188 @default.
- W4386769297 cites W2007711431 @default.
- W4386769297 cites W2013472385 @default.
- W4386769297 cites W2059772005 @default.
- W4386769297 cites W2079202969 @default.
- W4386769297 cites W2106974943 @default.
- W4386769297 cites W2110887814 @default.
- W4386769297 cites W2152668149 @default.
- W4386769297 cites W2261151942 @default.
- W4386769297 cites W2280161750 @default.
- W4386769297 cites W2326458789 @default.
- W4386769297 cites W2581921780 @default.
- W4386769297 cites W2587316859 @default.
- W4386769297 cites W2588069456 @default.
- W4386769297 cites W2615586834 @default.
- W4386769297 cites W2617799873 @default.
- W4386769297 cites W2772334523 @default.
- W4386769297 cites W2787966564 @default.
- W4386769297 cites W2887114371 @default.
- W4386769297 cites W2906904211 @default.
- W4386769297 cites W2943678964 @default.
- W4386769297 cites W2950100524 @default.
- W4386769297 cites W2952488008 @default.
- W4386769297 cites W2968695270 @default.
- W4386769297 cites W3014641072 @default.
- W4386769297 cites W3023335288 @default.
- W4386769297 cites W3086831972 @default.
- W4386769297 cites W3121137185 @default.
- W4386769297 cites W3153148450 @default.
- W4386769297 cites W3153560650 @default.
- W4386769297 cites W3191130978 @default.
- W4386769297 cites W4220824492 @default.
- W4386769297 doi "https://doi.org/10.24272/j.issn.2095-8137.2022.449" @default.
- W4386769297 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37721106" @default.
- W4386769297 hasPublicationYear "2023" @default.
- W4386769297 type Work @default.
- W4386769297 citedByCount "0" @default.
- W4386769297 crossrefType "journal-article" @default.
- W4386769297 hasAuthorship W4386769297A5006322038 @default.
- W4386769297 hasAuthorship W4386769297A5010974656 @default.
- W4386769297 hasAuthorship W4386769297A5020352221 @default.
- W4386769297 hasAuthorship W4386769297A5022137429 @default.
- W4386769297 hasAuthorship W4386769297A5026245073 @default.
- W4386769297 hasAuthorship W4386769297A5033642702 @default.
- W4386769297 hasAuthorship W4386769297A5045839676 @default.
- W4386769297 hasAuthorship W4386769297A5068675805 @default.
- W4386769297 hasAuthorship W4386769297A5076202570 @default.
- W4386769297 hasAuthorship W4386769297A5077004706 @default.
- W4386769297 hasAuthorship W4386769297A5080019095 @default.
- W4386769297 hasAuthorship W4386769297A5080762339 @default.
- W4386769297 hasAuthorship W4386769297A5083896582 @default.
- W4386769297 hasAuthorship W4386769297A5090859513 @default.
- W4386769297 hasBestOaLocation W43867692971 @default.
- W4386769297 hasConcept C104317684 @default.
- W4386769297 hasConcept C108583219 @default.
- W4386769297 hasConcept C116834253 @default.
- W4386769297 hasConcept C119857082 @default.
- W4386769297 hasConcept C127716648 @default.
- W4386769297 hasConcept C154945302 @default.
- W4386769297 hasConcept C15744967 @default.
- W4386769297 hasConcept C169760540 @default.
- W4386769297 hasConcept C185798385 @default.
- W4386769297 hasConcept C199360897 @default.
- W4386769297 hasConcept C205649164 @default.
- W4386769297 hasConcept C2777543196 @default.
- W4386769297 hasConcept C2777655017 @default.
- W4386769297 hasConcept C2778863441 @default.
- W4386769297 hasConcept C2780509455 @default.
- W4386769297 hasConcept C3020794687 @default.
- W4386769297 hasConcept C41008148 @default.
- W4386769297 hasConcept C55493867 @default.
- W4386769297 hasConcept C58640448 @default.
- W4386769297 hasConcept C59822182 @default.
- W4386769297 hasConcept C78458016 @default.
- W4386769297 hasConcept C86803240 @default.
- W4386769297 hasConceptScore W4386769297C104317684 @default.
- W4386769297 hasConceptScore W4386769297C108583219 @default.
- W4386769297 hasConceptScore W4386769297C116834253 @default.