Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386771663> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4386771663 abstract "Discovery of new materials is increased after the introduction of high accuracy machine learning techniques in the field of material science. Traditional way of discovering new composites requires lot of experimentation and laboratory measurements which consumes more energy and time. Property prediction using latest machine learning technology which saves lot of energy and time by avoiding experimentation and laboratory measurements. As a result, many researchers utilized the data analysis techniques to predict the properties of different material with high accuracy. So, in this research, the methodology is developed to predict the mechanical properties such as yield strength, hardness and tensile strength using ANN (Artificial Neural Network) and KNN (K-Nearest Neighbour algorithm). In Tensile strength and Hardness prediction, KNN has the higher R square value and Lower RMSE value compared to ANN which leads to more accurate predictions. But in the case of Yield strength prediction, ANN has the high R square value and Low RMSE value. The testing data size is varied from10 to 50 percent and RMSE values are calculated to prove the above results and also to find optimum testing data size. The suited algorithm is selected based on the R square and RMSE values and test size also varied to find the optimum test size of data to achieve more accuracy in prediction." @default.
- W4386771663 created "2023-09-16" @default.
- W4386771663 creator A5000005139 @default.
- W4386771663 creator A5061980886 @default.
- W4386771663 creator A5082371059 @default.
- W4386771663 creator A5092878163 @default.
- W4386771663 creator A5087016466 @default.
- W4386771663 date "2023-09-01" @default.
- W4386771663 modified "2023-09-27" @default.
- W4386771663 title "Comparison of k-nearest Neighbor & Artificial Neural Network prediction in the mechanical properties of aluminum alloys" @default.
- W4386771663 cites W2797621891 @default.
- W4386771663 cites W2965443271 @default.
- W4386771663 cites W3082059091 @default.
- W4386771663 cites W3091971557 @default.
- W4386771663 cites W3131546996 @default.
- W4386771663 cites W3161586041 @default.
- W4386771663 cites W3163679288 @default.
- W4386771663 cites W3171748182 @default.
- W4386771663 cites W3202677684 @default.
- W4386771663 cites W3206104075 @default.
- W4386771663 cites W3217310237 @default.
- W4386771663 cites W4200337544 @default.
- W4386771663 cites W4213048661 @default.
- W4386771663 cites W4221112509 @default.
- W4386771663 cites W4287729879 @default.
- W4386771663 cites W4308541834 @default.
- W4386771663 cites W4322626545 @default.
- W4386771663 doi "https://doi.org/10.1016/j.matpr.2023.09.111" @default.
- W4386771663 hasPublicationYear "2023" @default.
- W4386771663 type Work @default.
- W4386771663 citedByCount "0" @default.
- W4386771663 crossrefType "journal-article" @default.
- W4386771663 hasAuthorship W4386771663A5000005139 @default.
- W4386771663 hasAuthorship W4386771663A5061980886 @default.
- W4386771663 hasAuthorship W4386771663A5082371059 @default.
- W4386771663 hasAuthorship W4386771663A5087016466 @default.
- W4386771663 hasAuthorship W4386771663A5092878163 @default.
- W4386771663 hasConcept C105795698 @default.
- W4386771663 hasConcept C112950240 @default.
- W4386771663 hasConcept C113238511 @default.
- W4386771663 hasConcept C11413529 @default.
- W4386771663 hasConcept C119857082 @default.
- W4386771663 hasConcept C134121241 @default.
- W4386771663 hasConcept C135692309 @default.
- W4386771663 hasConcept C139945424 @default.
- W4386771663 hasConcept C154945302 @default.
- W4386771663 hasConcept C159985019 @default.
- W4386771663 hasConcept C16910744 @default.
- W4386771663 hasConcept C192562407 @default.
- W4386771663 hasConcept C199360897 @default.
- W4386771663 hasConcept C2524010 @default.
- W4386771663 hasConcept C33923547 @default.
- W4386771663 hasConcept C41008148 @default.
- W4386771663 hasConcept C50644808 @default.
- W4386771663 hasConceptScore W4386771663C105795698 @default.
- W4386771663 hasConceptScore W4386771663C112950240 @default.
- W4386771663 hasConceptScore W4386771663C113238511 @default.
- W4386771663 hasConceptScore W4386771663C11413529 @default.
- W4386771663 hasConceptScore W4386771663C119857082 @default.
- W4386771663 hasConceptScore W4386771663C134121241 @default.
- W4386771663 hasConceptScore W4386771663C135692309 @default.
- W4386771663 hasConceptScore W4386771663C139945424 @default.
- W4386771663 hasConceptScore W4386771663C154945302 @default.
- W4386771663 hasConceptScore W4386771663C159985019 @default.
- W4386771663 hasConceptScore W4386771663C16910744 @default.
- W4386771663 hasConceptScore W4386771663C192562407 @default.
- W4386771663 hasConceptScore W4386771663C199360897 @default.
- W4386771663 hasConceptScore W4386771663C2524010 @default.
- W4386771663 hasConceptScore W4386771663C33923547 @default.
- W4386771663 hasConceptScore W4386771663C41008148 @default.
- W4386771663 hasConceptScore W4386771663C50644808 @default.
- W4386771663 hasLocation W43867716631 @default.
- W4386771663 hasOpenAccess W4386771663 @default.
- W4386771663 hasPrimaryLocation W43867716631 @default.
- W4386771663 hasRelatedWork W1966844018 @default.
- W4386771663 hasRelatedWork W2049577800 @default.
- W4386771663 hasRelatedWork W2067778584 @default.
- W4386771663 hasRelatedWork W2385554864 @default.
- W4386771663 hasRelatedWork W2899084033 @default.
- W4386771663 hasRelatedWork W2995227436 @default.
- W4386771663 hasRelatedWork W3032645088 @default.
- W4386771663 hasRelatedWork W3148954008 @default.
- W4386771663 hasRelatedWork W3171559016 @default.
- W4386771663 hasRelatedWork W4280641190 @default.
- W4386771663 isParatext "false" @default.
- W4386771663 isRetracted "false" @default.
- W4386771663 workType "article" @default.