Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386775883> ?p ?o ?g. }
- W4386775883 endingPage "100128" @default.
- W4386775883 startingPage "100128" @default.
- W4386775883 abstract "Restenosis is a significant complication of revascularisation treatments in coronary and peripheral arteries, sometimes necessitating repeated intervention. Establishing when restenosis will happen is extremely difficult due to the interplay of multiple variables and factors. Standard clinical and Doppler ultrasound scans surveillance follow-ups are the only tools clinicians can rely on to monitor intervention outcomes. However, implementing efficient surveillance programmes is hindered by healthcare system limitations, patients’ comorbidities and compliance. Predictive models classifying patients according to their risk of developing restenosis over a specific period will allow the development of tailored surveillance, prevention programmes and efficient clinical workflows. This review aims to: 1) summarise the state-of-the-art in predictive models for restenosis in coronary and peripheral arteries, 2) compare their performance in terms of predictive power, 3) provide an outlook for potentially improved predictive models. We carried out a comprehensive literature review by accessing the PubMed/MEDLINE database according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The search strategy consisted of a combination of keywords and included studies focusing on predictive models of restenosis published between January 1993 and April 2023. One author independently screened titles, abstracts and checked for eligibility. The rest of the authors independently confirmed and discussed in case of any disagreement. The search of published literature identified 22 studies providing two perspectives - clinical and biomechanical engineering - on restenosis and comprising distinct methodologies, predictors and study designs. We compared predictive models’ performance on discrimination and calibration aspects. We reported the performance of models simulating re-occlusion progression, evaluated by comparison with clinical images. Clinical perspective studies consider only routinely collected patient information as restenosis predictors. Our review reveals that clinical models adopting traditional statistics (n=14) exhibit only modest predictive power. The latter improves when machine learning algorithms (n=4) are employed. The logistic regression models of the biomechanical engineering perspective (n=2) show enhanced predictive power when haemodynamic descriptors linked to restenosis are fused with a limited set of clinical risk factors. Biomechanical engineering studies simulating restenosis progression (n=2) are able to capture its evolution but are computationally expensive and lack risk scoring for individual patients at specific follow-ups. Restenosis predictive models, based solely on routine clinical risk factors and using classical statistics, inadequately predict the occurrence of restenosis. Risk stratification models with increased predictive power can be potentially built by adopting machine learning techniques and incorporating critical information regarding vessel haemodynamics arising from biomechanical engineering analyses." @default.
- W4386775883 created "2023-09-16" @default.
- W4386775883 creator A5026601290 @default.
- W4386775883 creator A5068950353 @default.
- W4386775883 creator A5075091934 @default.
- W4386775883 creator A5085770549 @default.
- W4386775883 date "2023-09-01" @default.
- W4386775883 modified "2023-10-06" @default.
- W4386775883 title "A systematic review of clinical and biomechanical engineering perspectives on the prediction of restenosis in coronary and peripheral arteries" @default.
- W4386775883 cites W1966716734 @default.
- W4386775883 cites W1976173548 @default.
- W4386775883 cites W1979252626 @default.
- W4386775883 cites W1982934571 @default.
- W4386775883 cites W1984462430 @default.
- W4386775883 cites W1992356067 @default.
- W4386775883 cites W2009624034 @default.
- W4386775883 cites W2012861732 @default.
- W4386775883 cites W2022863065 @default.
- W4386775883 cites W2042080283 @default.
- W4386775883 cites W2046807902 @default.
- W4386775883 cites W2064547591 @default.
- W4386775883 cites W2084621368 @default.
- W4386775883 cites W2092664796 @default.
- W4386775883 cites W2099868609 @default.
- W4386775883 cites W2115638129 @default.
- W4386775883 cites W2118544584 @default.
- W4386775883 cites W2125674758 @default.
- W4386775883 cites W2133246254 @default.
- W4386775883 cites W2135385041 @default.
- W4386775883 cites W2168934008 @default.
- W4386775883 cites W2548843758 @default.
- W4386775883 cites W2548983381 @default.
- W4386775883 cites W2564885730 @default.
- W4386775883 cites W2574329139 @default.
- W4386775883 cites W2801204877 @default.
- W4386775883 cites W2803068539 @default.
- W4386775883 cites W2808265769 @default.
- W4386775883 cites W2949796164 @default.
- W4386775883 cites W2951870300 @default.
- W4386775883 cites W2979020991 @default.
- W4386775883 cites W3005333799 @default.
- W4386775883 cites W3015875369 @default.
- W4386775883 cites W3037954304 @default.
- W4386775883 cites W3124801083 @default.
- W4386775883 cites W3127636792 @default.
- W4386775883 cites W3179444763 @default.
- W4386775883 cites W3181884847 @default.
- W4386775883 cites W3187428826 @default.
- W4386775883 cites W3197167074 @default.
- W4386775883 cites W3201330191 @default.
- W4386775883 cites W3202559266 @default.
- W4386775883 cites W3211838095 @default.
- W4386775883 cites W4206102576 @default.
- W4386775883 cites W4220753598 @default.
- W4386775883 cites W4226514722 @default.
- W4386775883 cites W4280499487 @default.
- W4386775883 cites W4281289057 @default.
- W4386775883 cites W4291002005 @default.
- W4386775883 cites W4320709649 @default.
- W4386775883 cites W4323652659 @default.
- W4386775883 cites W4323667386 @default.
- W4386775883 cites W4366421334 @default.
- W4386775883 cites W600840809 @default.
- W4386775883 doi "https://doi.org/10.1016/j.jvssci.2023.100128" @default.
- W4386775883 hasPublicationYear "2023" @default.
- W4386775883 type Work @default.
- W4386775883 citedByCount "0" @default.
- W4386775883 crossrefType "journal-article" @default.
- W4386775883 hasAuthorship W4386775883A5026601290 @default.
- W4386775883 hasAuthorship W4386775883A5068950353 @default.
- W4386775883 hasAuthorship W4386775883A5075091934 @default.
- W4386775883 hasAuthorship W4386775883A5085770549 @default.
- W4386775883 hasBestOaLocation W43867758831 @default.
- W4386775883 hasConcept C111472728 @default.
- W4386775883 hasConcept C126322002 @default.
- W4386775883 hasConcept C138885662 @default.
- W4386775883 hasConcept C17744445 @default.
- W4386775883 hasConcept C189708586 @default.
- W4386775883 hasConcept C19527891 @default.
- W4386775883 hasConcept C199539241 @default.
- W4386775883 hasConcept C2778136018 @default.
- W4386775883 hasConcept C2778283817 @default.
- W4386775883 hasConcept C2778583881 @default.
- W4386775883 hasConcept C2779473830 @default.
- W4386775883 hasConcept C71924100 @default.
- W4386775883 hasConceptScore W4386775883C111472728 @default.
- W4386775883 hasConceptScore W4386775883C126322002 @default.
- W4386775883 hasConceptScore W4386775883C138885662 @default.
- W4386775883 hasConceptScore W4386775883C17744445 @default.
- W4386775883 hasConceptScore W4386775883C189708586 @default.
- W4386775883 hasConceptScore W4386775883C19527891 @default.
- W4386775883 hasConceptScore W4386775883C199539241 @default.
- W4386775883 hasConceptScore W4386775883C2778136018 @default.
- W4386775883 hasConceptScore W4386775883C2778283817 @default.
- W4386775883 hasConceptScore W4386775883C2778583881 @default.
- W4386775883 hasConceptScore W4386775883C2779473830 @default.
- W4386775883 hasConceptScore W4386775883C71924100 @default.
- W4386775883 hasLocation W43867758831 @default.