Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386777182> ?p ?o ?g. }
- W4386777182 endingPage "2305" @default.
- W4386777182 startingPage "2277" @default.
- W4386777182 abstract "Batteries, particularly lithium-ion batteries, play an important role in powering our modern world, from portable devices to electric vehicles and renewable energy storage. However, during charging and discharging, they generate heat due to chemical reactions within them. This heat can lead to reduced performance, shortened lifespan, and even safety risks if not properly managed. To address this problem, Machine learning has been emerged as a changing tool in battery technology due to its ability to analyze large datasets that can be used in predicting battery temperatures and enhancing their thermal management. In this work, we address machine learning features along with a look at its various learning categories, frameworks, and applications. In a comprehensive study, various machine learning methods and neural networks used in battery temperature prediction and thermal management are analyzed and discussed along with its various training algorithms. Moreover, the paper reviews and summarizes various research publications examining battery temperature prediction and battery thermal management using the various machine learning algorithms. As a result, there is no superior machine learning algorithm for battery temperature prediction and thermal management, as the performance of the model may vary depending on the data set, training algorithm, and other parameters. However, among these machine learning algorithms researchers are preferring to use artificial neural networks due to its accuracy and model complexity. In particular, artificial neural network integrated with proper cooling technology can reduce the battery temperature by more than 25%." @default.
- W4386777182 created "2023-09-16" @default.
- W4386777182 creator A5073534575 @default.
- W4386777182 creator A5090857805 @default.
- W4386777182 date "2023-11-01" @default.
- W4386777182 modified "2023-09-28" @default.
- W4386777182 title "Batteries temperature prediction and thermal management using machine learning: An overview" @default.
- W4386777182 cites W1964935880 @default.
- W4386777182 cites W1967429206 @default.
- W4386777182 cites W1968313197 @default.
- W4386777182 cites W1985013794 @default.
- W4386777182 cites W2011534991 @default.
- W4386777182 cites W2019207321 @default.
- W4386777182 cites W2057858097 @default.
- W4386777182 cites W2062192823 @default.
- W4386777182 cites W2111072639 @default.
- W4386777182 cites W2113238782 @default.
- W4386777182 cites W2136325278 @default.
- W4386777182 cites W2138178898 @default.
- W4386777182 cites W2138742093 @default.
- W4386777182 cites W2148502600 @default.
- W4386777182 cites W2161815941 @default.
- W4386777182 cites W2256578114 @default.
- W4386777182 cites W2537879781 @default.
- W4386777182 cites W2586702902 @default.
- W4386777182 cites W2592620043 @default.
- W4386777182 cites W2766966300 @default.
- W4386777182 cites W2782149882 @default.
- W4386777182 cites W2805129967 @default.
- W4386777182 cites W2885195348 @default.
- W4386777182 cites W2898122376 @default.
- W4386777182 cites W2901312569 @default.
- W4386777182 cites W2908235220 @default.
- W4386777182 cites W2943162653 @default.
- W4386777182 cites W2964763564 @default.
- W4386777182 cites W2987147016 @default.
- W4386777182 cites W2991580538 @default.
- W4386777182 cites W2997746376 @default.
- W4386777182 cites W2997757557 @default.
- W4386777182 cites W3003769243 @default.
- W4386777182 cites W3006210364 @default.
- W4386777182 cites W3006760577 @default.
- W4386777182 cites W3007030665 @default.
- W4386777182 cites W3009077662 @default.
- W4386777182 cites W3009652674 @default.
- W4386777182 cites W3038955483 @default.
- W4386777182 cites W3081566847 @default.
- W4386777182 cites W3082457698 @default.
- W4386777182 cites W3087784263 @default.
- W4386777182 cites W3089487084 @default.
- W4386777182 cites W3090984990 @default.
- W4386777182 cites W3097765656 @default.
- W4386777182 cites W3103350657 @default.
- W4386777182 cites W3107745730 @default.
- W4386777182 cites W3110072658 @default.
- W4386777182 cites W3110183245 @default.
- W4386777182 cites W3111716631 @default.
- W4386777182 cites W3113216760 @default.
- W4386777182 cites W3118299338 @default.
- W4386777182 cites W3121464064 @default.
- W4386777182 cites W3122333722 @default.
- W4386777182 cites W3122696643 @default.
- W4386777182 cites W3128360602 @default.
- W4386777182 cites W3136321992 @default.
- W4386777182 cites W3137178035 @default.
- W4386777182 cites W3141302317 @default.
- W4386777182 cites W3145921563 @default.
- W4386777182 cites W3153000570 @default.
- W4386777182 cites W3153800618 @default.
- W4386777182 cites W3159185280 @default.
- W4386777182 cites W3160412342 @default.
- W4386777182 cites W3161130728 @default.
- W4386777182 cites W3161754207 @default.
- W4386777182 cites W3184561445 @default.
- W4386777182 cites W3194370204 @default.
- W4386777182 cites W3194867488 @default.
- W4386777182 cites W3214485354 @default.
- W4386777182 cites W3217470798 @default.
- W4386777182 cites W37018364 @default.
- W4386777182 cites W4200264979 @default.
- W4386777182 cites W4200530904 @default.
- W4386777182 cites W4205403322 @default.
- W4386777182 cites W4206097243 @default.
- W4386777182 cites W4206276094 @default.
- W4386777182 cites W4212900109 @default.
- W4386777182 cites W4213412736 @default.
- W4386777182 cites W4214745445 @default.
- W4386777182 cites W4220802498 @default.
- W4386777182 cites W4221130381 @default.
- W4386777182 cites W4223420024 @default.
- W4386777182 cites W4224132878 @default.
- W4386777182 cites W4224293633 @default.
- W4386777182 cites W4225105880 @default.
- W4386777182 cites W4239243115 @default.
- W4386777182 cites W4243150065 @default.
- W4386777182 cites W4283457293 @default.
- W4386777182 cites W4284964240 @default.
- W4386777182 cites W4284978155 @default.